raver119 763a225c6a [WIP] More of CUDA operations (#69)
* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* - gruCell_bp further

Signed-off-by: Yurii <yurii@skymind.io>

* - further work on gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Inverse matrix cublas implementation. Partial working revision.

* Separation of segment ops helpers. Max separation.

* Separated segment_min ops.

* Separation of segment_mean/sum/prod/sqrtN ops heleprs.

* Fixed diagonal processing with LUP decomposition.

* Modified inversion approach using current state of LU decomposition.

* Implementation of matrix_inverse op with cuda kernels. Working revision.

* Implemented sequence_mask cuda helper. Eliminated waste printf with matrix_inverse implementation. Added proper tests.

* - further work on gruCell_bp (ff/cuda)

Signed-off-by: Yurii <yurii@skymind.io>

* comment one test for gruCell_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda static_rnn

Signed-off-by: Yurii <yurii@skymind.io>

* Refactored random_shuffle op to use new random generator.

* Refactored random_shuffle op helper.

* Fixed debug tests with random ops tests.

* Implement random_shuffle op cuda kernel helper and tests.

* - provide cuda scatter_update

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of random_shuffle for linear case with cuda kernels and tests.

* Implemented random_shuffle with cuda kernels. Final revision.

* - finally gruCell_bp is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Dropout op cuda helper implementation.

* Implemented dropout_bp cuda helper.

* Implemented alpha_dropout_bp with cuda kernel helpers.

* Refactored helper.

* Implementation of suppresion helper with cuda kernels.

* - provide cpu code fot hsvToRgb, rgbToHsv, adjustHue

Signed-off-by: Yurii <yurii@skymind.io>

* Using sort by value method.

* Implementation of image.non_max_suppression op cuda-based helper.

* - correcting and testing adjust_hue, adjust_saturation cpu/cuda code

Signed-off-by: Yurii <yurii@skymind.io>

* Added cuda device prefixes to declarations.

* Implementation of hashcode op with cuda helper. Initital revision.

* rnn cu impl removed

Signed-off-by: raver119 <raver119@gmail.com>
2019-07-20 23:20:41 +10:00

98 lines
3.6 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 16.04.2018
//
// function nnCell implements an Elman RNN cell: output = activation(Wx*x + bx + Wh*ht + bh)
#include<ops/declarable/helpers/rnn.h>
#include <helpers/BlasHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void rnnCell(nd4j::LaunchContext * context, const NDArray* xt, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* hPrev, NDArray* ht) {
// xt input [bS x iS]
// Wx input-to-hidden weights, [iS x nU]
// Wh hidden-to-hidden weights, [nU x nU]
// b biases, [2*nU]: {0, nU} are input-to-hidden biases and {nU, 2*nU} are hidden-to-hidden biases
// hPrev previous cell output [bS x nU], that is at previous time step t-1, in case of projection=false -> nU=nU!!!
const int nU = hPrev->sizeAt(1);
// ht is current cell output [bS x nU], that is at current time step t
ht->assign(mmul(*xt, *Wx) + (*b)({{0, nU}}) + mmul(*hPrev, *Wh) + (*b)({{nU, 2*nU}})); // [bS x nU] + [nU] + [bS x nU] + [nU] = [bS x nU]
ht->applyTransform(transform::Tanh);
}
//////////////////////////////////////////////////////////////////////////
void rnnTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* h0, const NDArray* maxTimeStep, NDArray* h, NDArray* hFinal) {
// x input [time x bS x iS]
// Wx input-to-hidden weights, [iS x nU]
// Wh hidden-to-hidden weights, [nU x nU]
// b biases for, [2*nU]
// h0 initial cell output (at time step = 0) [bS x nU]
// maxTimeStep vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep
const int time = x->sizeAt(0);
const int bS = x->sizeAt(1);
// at first time step
if(h0)
hFinal->assign(h0);
else
*hFinal = 0.;
BlasHelper::getInstance(); // to avoid memory leak in pragma parallel loops
// loop through batch of inputs
for (int e = 0; e < bS; ++e) {
// loop through time steps
for (int t = 0; t < time; ++t) {
int maxStep = maxTimeStep ? maxTimeStep->e<int>(e) : time;
auto xt = (*x)({t,t+1, e,e+1, 0,0}, true);
auto ht = (*h)({t,t+1, e,e+1, 0,0}, true);
auto hPrev = (*hFinal)({e,e+1, 0,0}, true); // previous state
if(t >= maxStep) {
ht = 0.;
if(maxStep != 0)
hPrev.assign((*h)({maxStep-1,maxStep, e,e+1, 0,0}));
}
else {
helpers::rnnCell(context, &xt, Wx, Wh, b, &hPrev, &ht);
hPrev.assign(ht);
}
}
}
}
}
}
}