* fix double consumption of rng on cpu Signed-off-by: raver119 <raver119@gmail.com> * Shyrma docs (#222) * - documenting and profiling matrix_set_diag cuda kernel Signed-off-by: Yurii <yurii@skymind.io> * - correct formula of pnorm pooling in cuda 2d/3d kernels - remove helper matrix_diag which duplicates work of helper matrix_set_diag Signed-off-by: Yurii <yurii@skymind.io> * cublasHandle sharing + lock Signed-off-by: raver119 <raver119@gmail.com> * cublasHandle sharing + lock Signed-off-by: raver119 <raver119@gmail.com> * Documentation from serialization/deserialization in NLP (#221) * refactoring Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * Javadocs Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * Javadoc fixed Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * Cleanup Signed-off-by: Alexander Stoyakin <alexander.stoyakin@gmail.com> * dedicated lock for getCudaCublasHandle Signed-off-by: raver119 <raver119@gmail.com> * Small fixes (#223) Signed-off-by: AlexDBlack <blacka101@gmail.com> * ELU DL4J fixes (#224) Signed-off-by: AlexDBlack <blacka101@gmail.com> * javadoc (#225) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Small test compilation fix (#226) Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8182 remove spark version suffix (#227) Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Thread safety (#229) * sync after cublas*gemm Signed-off-by: raver119 <raver119@gmail.com> * mutex for CublasHelper Signed-off-by: raver119 <raver119@gmail.com> * don't store cublasHandle in LaunchContext, it's per-device anyway Signed-off-by: raver119 <raver119@gmail.com> * some printout Signed-off-by: raver119 <raver119@gmail.com> * check for field instead Signed-off-by: raver119 <raver119@gmail.com> * pew-pew Signed-off-by: raver119 <raver119@gmail.com> * don't release ContextBuffers until device changed Signed-off-by: raver119 <raver119@gmail.com> * small tweak Signed-off-by: raver119 <raver119@gmail.com> * some logging in sgemm Signed-off-by: raver119 <raver119@gmail.com> * stream sync Signed-off-by: raver119 <raver119@gmail.com> * some more logging Signed-off-by: raver119 <raver119@gmail.com> * some more error checks Signed-off-by: raver119 <raver119@gmail.com> * one fancy test Signed-off-by: raver119 <raver119@gmail.com> * one fancy test Signed-off-by: raver119 <raver119@gmail.com> * minor AffinityManager fix Signed-off-by: raver119 <raver119@gmail.com> * cudaEvent error logging improvement Signed-off-by: raver119 <raver119@gmail.com> * ConstantHelper thread safety Signed-off-by: raver119 <raver119@gmail.com> * - minor corrections in ConstantTadHelper Signed-off-by: Yurii <yurii@skymind.io> * ConstantShapeHelper thread safety Signed-off-by: raver119 <raver119@gmail.com> * ConstantTadHelper.cu updated Signed-off-by: raver119 <raver119@gmail.com> * logging off Signed-off-by: raver119 <raver119@gmail.com> * logging off Signed-off-by: raver119 <raver119@gmail.com>
125 lines
5.5 KiB
Plaintext
125 lines
5.5 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include "testlayers.h"
|
|
#include <ops/declarable/CustomOperations.h>
|
|
#include <NDArray.h>
|
|
#include <NativeOps.h>
|
|
#include <helpers/BitwiseUtils.h>
|
|
|
|
using namespace nd4j;
|
|
using namespace nd4j::graph;
|
|
|
|
class SortCudaTests : public testing::Test {
|
|
public:
|
|
|
|
};
|
|
|
|
|
|
TEST_F(SortCudaTests, test_linear_sort_by_key_1) {
|
|
auto k = NDArrayFactory::create<Nd4jLong>('c', {10}, {1, 3, 5, 9, 0, 2, 4, 6, 7, 8});
|
|
auto v = NDArrayFactory::create<double>('c', {10}, {1.5, 3.5, 5.5, 9.5, 0.5, 2.5, 4.5, 6.5, 7.5, 8.5});
|
|
|
|
auto ek = NDArrayFactory::create<Nd4jLong>('c', {10}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
auto ev = NDArrayFactory::create<double>('c', {10}, {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5});
|
|
|
|
Nd4jPointer extras[2] = {nullptr, LaunchContext::defaultContext()->getCudaStream()};
|
|
|
|
sortByKey(extras, k.buffer(), k.shapeInfo(), k.specialBuffer(), k.specialShapeInfo(), v.buffer(), v.shapeInfo(), v.specialBuffer(), v.specialShapeInfo(), false);
|
|
k.tickWriteDevice();
|
|
v.tickWriteDevice();
|
|
|
|
ASSERT_EQ(ek, k);
|
|
ASSERT_EQ(ev, v);
|
|
}
|
|
|
|
TEST_F(SortCudaTests, test_linear_sort_by_val_1) {
|
|
auto k = NDArrayFactory::create<Nd4jLong>('c', {10}, {1, 3, 5, 9, 0, 2, 4, 6, 7, 8});
|
|
auto v = NDArrayFactory::create<double>('c', {10}, {1.5, 3.5, 5.5, 9.5, 0.5, 2.5, 4.5, 6.5, 7.5, 8.5});
|
|
|
|
auto ek = NDArrayFactory::create<Nd4jLong>('c', {10}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
auto ev = NDArrayFactory::create<double>('c', {10}, {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5});
|
|
|
|
Nd4jPointer extras[2] = {nullptr, LaunchContext::defaultContext()->getCudaStream()};
|
|
|
|
sortByValue(extras, k.buffer(), k.shapeInfo(), k.specialBuffer(), k.specialShapeInfo(), v.buffer(), v.shapeInfo(), v.specialBuffer(), v.specialShapeInfo(), false);
|
|
k.tickWriteDevice();
|
|
v.tickWriteDevice();
|
|
|
|
ASSERT_EQ(ek, k);
|
|
ASSERT_EQ(ev, v);
|
|
}
|
|
|
|
TEST_F(SortCudaTests, test_linear_sort_by_val_2) {
|
|
auto k = NDArrayFactory::create<int>('c', {6}, {0, 1, 2, 3, 4, 5});
|
|
// auto v = NDArrayFactory::create<double>('c', {6}, {1.5, 3.5, 5.5, 9.5, 0.5, 2.5, 4.5, 6.5, 7.5, 8.5});
|
|
NDArray v = NDArrayFactory::create<double>('c', {6}, {0.9f, .75f, .6f, .95f, .5f, .3f});
|
|
auto ek = NDArrayFactory::create<int>('c', {6}, {3, 0, 1, 2, 4, 5});
|
|
auto ev = NDArrayFactory::create<double>('c', {6}, {0.95, 0.9, 0.75, 0.6, 0.5, 0.3});
|
|
|
|
Nd4jPointer extras[2] = {nullptr, LaunchContext::defaultContext()->getCudaStream()};
|
|
|
|
sortByValue(extras, k.buffer(), k.shapeInfo(), k.specialBuffer(), k.specialShapeInfo(), v.buffer(), v.shapeInfo(), v.specialBuffer(), v.specialShapeInfo(), true);
|
|
k.tickWriteDevice();
|
|
v.tickWriteDevice();
|
|
// k.printIndexedBuffer("KEYS");
|
|
ASSERT_EQ(ek, k);
|
|
ASSERT_EQ(ev, v);
|
|
}
|
|
|
|
TEST_F(SortCudaTests, test_tad_sort_by_key_1) {
|
|
auto k = NDArrayFactory::create<Nd4jLong>('c', {2, 10}, {1, 3, 5, 9, 0, 2, 4, 6, 7, 8, 1, 3, 5, 9, 0, 2, 4, 6, 7, 8});
|
|
auto v = NDArrayFactory::create<double>('c', {2, 10}, {1.5, 3.5, 5.5, 9.5, 0.5, 2.5, 4.5, 6.5, 7.5, 8.5, 1.5, 3.5, 5.5, 9.5, 0.5, 2.5, 4.5, 6.5, 7.5, 8.5});
|
|
|
|
auto ek = NDArrayFactory::create<Nd4jLong>('c', {2, 10}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
auto ev = NDArrayFactory::create<double>('c', {2, 10}, {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5});
|
|
|
|
Nd4jPointer extras[2] = {nullptr, LaunchContext::defaultContext()->getCudaStream()};
|
|
|
|
int axis = 1;
|
|
sortTadByKey(extras, k.buffer(), k.shapeInfo(), k.specialBuffer(), k.specialShapeInfo(), v.buffer(), v.shapeInfo(), v.specialBuffer(), v.specialShapeInfo(), &axis, 1, false);
|
|
k.tickWriteDevice();
|
|
v.tickWriteDevice();
|
|
|
|
// k.printIndexedBuffer("k");
|
|
// v.printIndexedBuffer("v");
|
|
|
|
ASSERT_EQ(ek, k);
|
|
ASSERT_EQ(ev, v);
|
|
}
|
|
|
|
TEST_F(SortCudaTests, test_tad_sort_by_val_1) {
|
|
auto k = NDArrayFactory::create<Nd4jLong>('c', {2, 10}, {1, 3, 5, 9, 0, 2, 4, 6, 7, 8, 1, 3, 5, 9, 0, 2, 4, 6, 7, 8});
|
|
auto v = NDArrayFactory::create<double>('c', {2, 10}, {1.5, 3.5, 5.5, 9.5, 0.5, 2.5, 4.5, 6.5, 7.5, 8.5, 1.5, 3.5, 5.5, 9.5, 0.5, 2.5, 4.5, 6.5, 7.5, 8.5});
|
|
|
|
auto ek = NDArrayFactory::create<Nd4jLong>('c', {2, 10}, {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9});
|
|
auto ev = NDArrayFactory::create<double>('c', {2, 10}, {0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5});
|
|
|
|
Nd4jPointer extras[2] = {nullptr, LaunchContext::defaultContext()->getCudaStream()};
|
|
|
|
int axis = 1;
|
|
sortTadByValue(extras, k.buffer(), k.shapeInfo(), k.specialBuffer(), k.specialShapeInfo(), v.buffer(), v.shapeInfo(), v.specialBuffer(), v.specialShapeInfo(), &axis, 1, false);
|
|
k.tickWriteDevice();
|
|
v.tickWriteDevice();
|
|
|
|
ASSERT_EQ(ek, k);
|
|
ASSERT_EQ(ev, v);
|
|
}
|