* initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * another initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * one more initial commit Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next step Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored buffer() and shapeInfo() methods usage with NDArray class. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt Graph class methods to use const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt choose op to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt where op shape method to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt lstsq op to use constant empty shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt matrix_diag_part op shape routine to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt determinant ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt mean_pairwssqerr_loss ops to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for loss ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt log_loss op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt dilation2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted deconv2d ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted dynamicRNN op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for lstm layer ops. Signed-off-by: shugeo <sgazeos@gmail.com> * few updates Signed-off-by: raver119@gmail.com <raver119@gmail.com> * first cuda tweak Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Adopt constant shapes for sconv2d ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes for gru ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt constant shapes with shape methods for segment ops and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with unsorted_segment_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted constant shapes with gamma op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods of reduce_stddev ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape methods for reduce_* ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt shape method for squeeze op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt strided_slice shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored concat op shape method to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted shape method for mirror_pad op. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted split op shape method. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted tile ops shape methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Added const cast for mkldnn routines handles. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored logSoftMaxForVector_ routine to conform with proper data and shape pointer casts. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetic changes to proper usage of constant pointers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple shape comparators for strides and addBias helpers to proper use data pointers with inplace option. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored depthToSpace helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored histogram helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored im2col helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored gather and gatherND helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage on percentile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed gather shape with helpers and range buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with space to depth helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage and constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with LUP decomposition> Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored onehot_ helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pad and prefix to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactoed softmax helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed space to batch helpers to use buffers properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed stack and split helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with sparse to dense helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with mindistance_ helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with tile helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with legacy pairwise bool ops. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored a couple of methods to adopt constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed broadcasting with constant shape." Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const usage with inplace reverse and constant shapes with legacy reduction. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored sort to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected sort for constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed constant shape usage with special methods. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored Context to conform with constant shape usage. Signed-off-by: shugeo <sgazeos@gmail.com> * CUDA broadcasting headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * pairwise/indexreduce/random headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored native ops to adopt constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * legacy reduce3/scalar headers Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected pullRow signature and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected routines to proper use of constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored legacy ops tests to use constant shapes properly. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with NDArray tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed native ops tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed special concat routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with test. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed buffer usage with a test. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored TAD.h and tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored calcStrides* routines to use constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed miscelaneous errors with constant shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Corrected definitions for declared functions. Signed-off-by: shugeo <sgazeos@gmail.com> * NativeOps const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed const shapes with shape routines. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed shape method for broadcastable case. Signed-off-by: shugeo <sgazeos@gmail.com> * few more const changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * xw_plus_b BP shape fn restored Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed signatures with broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Repaired backprops shape methods for a set of operations. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored broadcast bool for cuda. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods for 3 args with const qualifier. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed a couple of kernel signatures for broadcasting. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels signatures for const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise methods to persistent buffers and shapes usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopt const to buffers and shapes with scalar kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored indexreduce kernels signatures to use const buffers and shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored pairwise bool kernels to adopt cons shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored random special ops to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored native ops to conform with const shapes and buffers under cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Cosmetical changes only. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes and buffers error. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected start pos routine. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored methods to conform with const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored helpers to use proper methods instead. Signed-off-by: shugeo <sgazeos@gmail.com> * bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * next bunch of changes Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed execScalar declaration. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected const shape cases with sort and so on. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes for sort. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored kernel declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernel declarations to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernels declarations to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed segment helpers kernels declarations and so on to adopt const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with segment and solve helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed kernel declaration with adjustWeight helper. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed cuda implementations for constant shape helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted const shape usage with kernels. Signed-off-by: shugeo <sgazeos@gmail.com> * Adopted top_k kernels to use const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Corrected kernels declarations to adopt const shapes with helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored NDArray definitions to adopt const shapes and buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shapes with image suppression helpers. Signed-off-by: shugeo <sgazeos@gmail.com> * Slight improvement with buffers. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored buffer usage with tests. Signed-off-by: shugeo <sgazeos@gmail.com> * Fixed const shape usage with definitions. Signed-off-by: shugeo <sgazeos@gmail.com> * minor updates on cpu side Signed-off-by: raver119@gmail.com <raver119@gmail.com> * Refactored const shape usage with ConstantDescritor and native ops with cuda platform. Signed-off-by: shugeo <sgazeos@gmail.com> * Refactored tear and tile kernels to adopt with const shapes. Signed-off-by: shugeo <sgazeos@gmail.com> * softmax_loop fix Signed-off-by: raver119 <raver119@gmail.com> * update missing signature Signed-off-by: raver119@gmail.com <raver119@gmail.com> * softmax again Signed-off-by: raver119@gmail.com <raver119@gmail.com> * few more missing consts Signed-off-by: raver119 <raver119@gmail.com> * new methods updated Signed-off-by: raver119@gmail.com <raver119@gmail.com> Co-authored-by: shugeo <sgazeos@gmail.com>
323 lines
15 KiB
C++
323 lines
15 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
#ifndef CUDA_LAMBDA_HELPER
|
|
#define CUDA_LAMBDA_HELPER
|
|
|
|
#include <system/pointercast.h>
|
|
#include <system/op_boilerplate.h>
|
|
#include <helpers/shape.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
static Nd4jLong __device__ __noinline__ getIndexOffset(Nd4jLong index, const Nd4jLong *shapeInfo) {
|
|
return shape::getIndexOffset(index, shapeInfo);
|
|
}
|
|
|
|
static Nd4jLong __device__ __noinline__ length(const Nd4jLong *shapeInfo) {
|
|
return shape::length(shapeInfo);
|
|
}
|
|
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaKernel(const void* vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaIndexedKernel(const void* vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaIndexedPairwiseKernel(const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaPairwiseKernel(const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaTriplewiseKernel(const void* vw, const Nd4jLong *wShapeInfo, const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda);
|
|
|
|
template <typename T>
|
|
class LambdaHelper {
|
|
public:
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaLauncher(cudaStream_t *stream, const void* vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaIndexedLauncher(cudaStream_t *stream, const void* vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaIndexedKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyIndexedLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaPairwiseLauncher(cudaStream_t *stream, const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaPairwiseKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyPairwiseLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaIndexedPairwiseLauncher(cudaStream_t *stream, const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaIndexedPairwiseKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyIndexedPairwiseLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaTriplewiseLauncher(cudaStream_t *stream,const void* vw, const Nd4jLong *wShapeInfo, const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaTriplewiseKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vw, wShapeInfo, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyTriplewiseLambda execution failed");
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaKernel(const void* vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && zEws >= 1 && xOrder == zOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(x[e * xEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = getIndexOffset(e, xShapeInfo);
|
|
auto zOffset = getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(x[xOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaIndexedKernel(const void* vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && zEws >= 1 && xOrder == zOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(e, x[e * xEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = getIndexOffset(e, xShapeInfo);
|
|
auto zOffset = getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(e, x[xOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaIndexedPairwiseKernel(const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<const T*>(vx);
|
|
auto y = reinterpret_cast<const T*>(vy);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto yEws = shape::elementWiseStride(yShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto yOrder = shape::order(yShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && yEws >= 1 && zEws >= 1 && xOrder == zOrder && yOrder == xOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(e, x[e * xEws], y[e * yEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = getIndexOffset(e, xShapeInfo);
|
|
auto yOffset = getIndexOffset(e, yShapeInfo);
|
|
auto zOffset = getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(e, x[xOffset], y[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaPairwiseKernel(const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<const T*>(vx);
|
|
auto y = reinterpret_cast<const T*>(vy);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto yEws = shape::elementWiseStride(yShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto yOrder = shape::order(yShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && yEws >= 1 && zEws >= 1 && xOrder == zOrder && yOrder == xOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(x[e * xEws], y[e * yEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = getIndexOffset(e, xShapeInfo);
|
|
auto yOffset = getIndexOffset(e, yShapeInfo);
|
|
auto zOffset = getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(x[xOffset], y[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaTriplewiseKernel(const void* vw, const Nd4jLong *wShapeInfo, const void* vx, const Nd4jLong *xShapeInfo, const void* vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto w = reinterpret_cast<const T*>(vw);
|
|
auto x = reinterpret_cast<const T*>(vx);
|
|
auto y = reinterpret_cast<const T*>(vy);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto wEws = shape::elementWiseStride(wShapeInfo);
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto yEws = shape::elementWiseStride(yShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto wOrder = shape::order(wShapeInfo);
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto yOrder = shape::order(yShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (wEws > 1 && xEws >= 1 && yEws >= 1 && zEws >= 1 && xOrder == zOrder && yOrder == xOrder && wOrder == xOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(w[e * wEws], x[e * xEws], y[e * yEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto wOffset = getIndexOffset(e, wShapeInfo);
|
|
auto xOffset = getIndexOffset(e, xShapeInfo);
|
|
auto yOffset = getIndexOffset(e, yShapeInfo);
|
|
auto zOffset = getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(w[wOffset], x[xOffset], y[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename Lambda>
|
|
void NDArray::applyLambda(Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
|
|
if (dtype != target.dataType())
|
|
throw std::runtime_error("NDArray::applyLambda X/Z data types must be the same");
|
|
//throw datatype_exception::build("NDArray::applyLambda X/Z data types must be the same", dtype, target.dataType());
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename Lambda>
|
|
void NDArray::applyPairwiseLambda(const NDArray& other, Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
|
|
if (dtype != target.dataType() || dtype != other.dataType())
|
|
throw std::runtime_error("NDArray::applyPairwiseLambda X/Y/Z data types must be the same");
|
|
//throw datatype_exception::build("NDArray::applyLambda X/Z data types must be the same", dtype, target.dataType());
|
|
|
|
prepareSpecialUse({&target}, {this, &other});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaPairwiseLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), other.specialBuffer(), other.specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this, &other});
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename Lambda>
|
|
void NDArray::applyIndexedLambda(Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
if (dtype != target.dataType())
|
|
throw std::runtime_error("NDArray::applyIndexedLambda X/Z data types must be the same");
|
|
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaIndexedLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename Lambda>
|
|
void NDArray::applyIndexedPairwiseLambda(NDArray& other, Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
if (dtype != target.dataType() || dtype != other.dataType())
|
|
throw std::runtime_error("NDArray::applyIndexedPairwiseLambda X/Y/Z data types must be the same");
|
|
|
|
prepareSpecialUse({&target}, {this, &other});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaIndexedPairwiseLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), other.specialBuffer(), other.specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this, &other});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename Lambda>
|
|
void NDArray::applyTriplewiseLambda(NDArray& second, NDArray& third, Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
|
|
if (dtype != target.dataType() || dtype != second.dataType() || dtype != third.dataType())
|
|
throw std::runtime_error("NDArray::applyTriplewiseLambda X/Y/Z data types must be the same");
|
|
|
|
prepareSpecialUse({&target}, {this, &second, &third});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaTriplewiseLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), second.specialBuffer(), second.specialShapeInfo(), third.specialBuffer(), third.specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this, &second, &third});
|
|
}
|
|
|
|
|
|
|
|
|
|
|