cavis/libnd4j/include/ops/declarable/helpers/cpu/gru.cpp

314 lines
14 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author Yurii Shyrma (iuriish@yahoo.com), created on 15.02.2018, Alex Black
//
// implementation of gated Recurrent Unit cell
// (cf. http://arxiv.org/abs/1406.1078).
// Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio
// "Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation"
#include<ops/declarable/helpers/gru.h>
#include <ops/declarable/CustomOperations.h>
#include<ops/declarable/helpers/transforms.h>
#include <MmulHelper.h>
namespace nd4j {
namespace ops {
namespace helpers {
//////////////////////////////////////////////////////////////////////////
void gruCell(nd4j::LaunchContext * context, const NDArray* x, const NDArray* hLast, const NDArray* Wru, const NDArray* Wc,
const NDArray* bru, const NDArray* bc,
NDArray* r, NDArray* u, NDArray* c, NDArray* h) {
//Inputs:
// x input [bS, nIn], nIn - input size
// hLast previous cell output [bS, nUn], that is at previous time step t-1, nUn - number of units
// Wru RU weights - [nIn+nUn, 2*nUn] - reset and update gates
// Wc C weights - [nIn+nUn, nUn] - cell gate
// bru r and u biases, [2*nUn] - reset and update gates
// bc c biases, [nUn] - cell gate
//Outputs:
// r Reset gate output [bS, nUn]
// u Update gate output [bS, nUn]
// c Cell gate output [bS, nUn]
// h current cell output [bS, nUn]
/***************************************************************************************/
/************************ THIS IS NOT OPTIMAZED CODE ***********************************/
/** however it is more math-friendly and convenient for backprop formulas derivation) **/
const int bS = x->sizeAt(0);
const int nIn = x->sizeAt(1);
const int nUn = hLast->sizeAt(1);
NDArray Wr = (*Wru)({0,nIn, 0,0}); // reset gates weights [nIn, 2*nUn]
NDArray Wu = (*Wru)({nIn,nIn+nUn, 0,0}); // updates gates weights [nUn, 2*nUn]
NDArray Wcr = (*Wc)({0,nIn, 0,0}); // reset cell weights [nIn, nUn]
NDArray Wcu = (*Wc)({nIn,nIn+nUn, 0,0}); // updates cell weights [nUn, nUn]
// gates = sigmoid(x*Wr + hLast*Wu + br + bu)
NDArray gates = mmul(*x, Wr) + mmul(*hLast, Wu) + *bru; // [bS, nIn] * [nIn, 2*nUn] + [bS, nUn] * [nUn, 2*nUn] + [2*nUn] = [bS, 2*nUn]
gates.applyTransform(transform::Sigmoid);
// reset gate
r->assign(gates({0,0, 0,nUn})); // [bS, nUn]
// update gate
u->assign(gates({0,0, nUn,2*nUn})); // [bS, nUn]
// cell gate c = activation(x*Wcr + (r◦hlast)*Wcu + bc)
c->assign(mmul(*x, Wcr) + mmul(*r * *hLast, Wcu) + *bc); // [bS, nIn] * [nIn, nUn] + [bS, nUn] * [nUn, nUn] + [nUn] = [bS, nUn]
c->applyTransform(transform::Tanh);
// cell output
h->assign(*u * *hLast + (1.f - *u) * *c);
/***************************************************************************************/
/********************** THIS MORE OPTIMAZED CODE (except concat ) **********************/
/***************************************************************************************/
/*
//Concat inputs: x + hLast : [bs, nIn + nUn]
NDArray xhConcat(x->ordering(), {bS, nIn + nUn}, x->dataType(), context); // concat([bs, nIn], [bs, nUn]) -> [bs, nIn + nUn]
helpers::concat(context, {const_cast<NDArray*>(x), const_cast<NDArray*>(hLast)}, xhConcat, {1});
//mmul for reset and update gates: (x * weight_ux + hLast * weight_xr + b_u)
auto m = mmul(xhConcat, *Wru) + *bru ; // [bs, nIn+nUn] * [nIn+nUn, 2*nUn] = [bs, 2*nUn]
// m += *bru;
sigmoidInplace(m); //sigmoid(rz) and sigmoid(uz)
r->assign(m({0,0, 0, nUn}));
u->assign(m({0,0, nUn, 2*nUn}));
// hLast = hLast * r
xhConcat({0,0, nIn, nIn+nUn}) *= *r;
//c = tanh(x * weight_cx + (hLast .* r) * weight_cr + b_c)
MmulHelper::mmul(&xhConcat, Wc, c, 1.0, 0.0); //c = 1.0 * xhConcat * Wc + 0.0 * c
*c += *bc;
tanhInplace(*c);
//Output: h = (1-u).*c + u .* hPrev
//auto hResult = (*u) * (*hLast) + (1.0f - *u) * (*c); const_cast<NDArray*>(h)->assign(&hResult);
u->applyPairwiseTransform(pairwise::Multiply, hLast, h, nullptr); //h = u * hLast
auto temp = (1.0f - *u);
temp *= (*c);
(*h) += temp;
*/
}
//////////////////////////////////////////////////////////////////////////
void gruTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* h0, const NDArray* Wx, const NDArray* Wh, const NDArray* b, NDArray* h) {
// x input [time, bS, iS]
// h0 initial cell output (at time step = 0) [bS, nUn]
// Wx input-to-hidden weights, [iS, 3*nUn]
// Wh hidden-to-hidden weights, [nUn, 3*nUn]
// b biases, [3*nUn]
// h is cell outputs at each time step [time, bS, nUn]
const int time = x->sizeAt(0);
NDArray ht_1(*h0);
// loop through time steps
for (int t = 0; t < time; ++t) {
auto xt = (*x)({t,t+1, 0,0, 0,0});
auto ht = (*h)({t,t+1, 0,0, 0,0});
//helpers::gruCell(&xt, &ht_1, Wx, Wh, b, &ht);
//ht_1.assign(ht);
}
}
//////////////////////////////////////////////////////////////////////////
void gruCellBP(nd4j::LaunchContext * context, const NDArray* x, const NDArray* h0, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* dLdh, const NDArray* dLdWx0,
const NDArray* dLdWh0, const NDArray* dLdb0, NDArray* dLdx, NDArray* dLdh0, NDArray* dLdWx, NDArray* dLdWh, NDArray* dLdb) {
// x input [bS, iS]
// h0 previous cell output [bS, nUn], that is at previous time step t-1
// Wx input-to-hidden weights, [iS, 3*nUn]
// Wh hidden-to-hidden weights, [nUn, 3*nUn]
// b biases, [3*nUn]
// dLdh gradient wrt output, [bS,nUn], that is epsilon_next
// dLdWx0 gradient wrt Wx at previous time step, [iS, 3*nUn]
// dLdWh0 gradient wrt Wh at previous time step, [nUn, 3*nUn]
// dLdb0 gradient wrt b at previous time step, [3*nUn]
// dLdx gradient wrt x, [bS, iS], that is epsilon
// dLdh0 gradient wrt h0, [bS, nUn]
// dLdWx gradient wrt Wx, [iS, 3*nUn]
// dLdWh gradient wrt Wh, [nUn, 3*nUn]
// dLdb gradient wrt b at previous time step, [3*nUn]
// h is current cell output [bS, nUn], that is at current time step t
const int nUn = h0->sizeAt(1);
// ***** feed forward step ***** //
// gates = sigmoid(x*Wx + h0*Wh + b)
auto gates = sigmoid(mmul(*x, (*Wx)({0,0, 0,2*nUn})) + mmul(*h0, (*Wh)({0,0, 0,2*nUn})) + (*b)({0,2*nUn})); // [bS, 2*nUn] + [bS, 2*nUn] + [1, 2*nUn] = [bS, 2*nUn]
// reset gate
auto r = gates({0,0, 0, nUn}); // [bS, nUn]
// update gate
auto u = gates({0,0, nUn, 2*nUn}); // [bS, nUn]
// ◦ means element-wise product or so called Hadamard product
// n = tanh(x*Wx + (r◦h0)*Wh + b)
auto n = tanh(mmul(*x, (*Wx)({0,0, 2*nUn,3*nUn})) + mmul((*h0)*r, (*Wh)({0,0, 2*nUn,3*nUn})) + (*b)({2*nUn,3*nUn})); // [bS, nUn]
// ***** back prop step ***** //
auto Wxr = (*Wx)({0,0, 0, nUn});
auto Wxu = (*Wx)({0,0, nUn, 2*nUn});
auto Wxn = (*Wx)({0,0, 2*nUn,3*nUn});
auto Whr = (*Wh)({0,0, 0, nUn});
auto Whu = (*Wh)({0,0, nUn, 2*nUn});
auto Whn = (*Wh)({0,0, 2*nUn,3*nUn});
auto WxrT = Wxr.transpose();
auto WxuT = Wxu.transpose();
auto WxnT = Wxn.transpose();
auto WhrT = Whr.transpose();
auto WhuT = Whu.transpose();
auto WhnT = Whn.transpose();
auto xT = x->transpose();
auto h0T = h0->transpose();
auto dLdWxr = (*dLdWx)({0,0, 0, nUn});
auto dLdWxu = (*dLdWx)({0,0, nUn, 2*nUn});
auto dLdWxn = (*dLdWx)({0,0, 2*nUn,3*nUn});
auto dLdWhr = (*dLdWh)({0,0, 0, nUn});
auto dLdWhu = (*dLdWh)({0,0, nUn, 2*nUn});
auto dLdWhn = (*dLdWh)({0,0, 2*nUn,3*nUn});
auto dLdbr = (*dLdb)({0, nUn});
auto dLdbu = (*dLdb)({nUn, 2*nUn});
auto dLdbn = (*dLdb)({2*nUn,3*nUn});
auto dhdu = *h0 - n; // [bS, nUn]
auto dhdn = 1.f - u; // [bS, nUn]
auto dSigdu = u * (1.f - u); // [bS, nUn]
auto dSigdr = r * (1.f - r); // [bS, nUn]
auto dActdn = 1.f - n * n; // [bS, nUn]
auto dndr = mmul(dActdn * (*h0), WhnT);
auto drdh0 = mmul(dSigdr, WhrT);
auto dLdn = (*dLdh) * dhdn;
auto dLdu = (*dLdh) * dhdu;
auto dLdr = dLdn * dndr;
dLdx->assign( mmul(dLdu * dSigdu, WxuT) + mmul(dLdr * dSigdr, WxrT) + mmul(dLdn * dActdn, WxnT) ); // [bS,iS]
dLdh0->assign( mmul(dLdu * dSigdu, WhuT) + mmul(dLdn * dActdn * (r + drdh0), WhnT) + (*dLdh)*u ); // [bS,nUn]
dLdWxr.assign( mmul(xT, dSigdr * dLdr) ); // [iS,nUn]
dLdWhr.assign( mmul(h0T, dSigdr * dLdr) ); // [nUn,nUn]
dLdWxu.assign( mmul(xT, dSigdu * dLdu) ); // [iS,nUn]
dLdWhu.assign( mmul(h0T, dSigdu * dLdu) ); // [nUn,nUn]
dLdWxn.assign( mmul(xT, dActdn * dLdn) ); // [iS,nUn]
dLdWhn.assign( mmul((r*(*h0)).transpose(), dActdn * dLdn) ); // [nUn,nUn]
dLdbr.assign( (dSigdr * dLdr).reduceAlongDims(reduce::Sum, {0})); // [nUn]
dLdbu.assign( (dSigdu * dLdu).reduceAlongDims(reduce::Sum, {0})); // [nUn]
dLdbn.assign( (dActdn * dLdn).reduceAlongDims(reduce::Sum, {0})); // [nUn]
if(dLdWx0 != nullptr)
*dLdWx += *dLdWx0;
if(dLdWh0 != nullptr)
*dLdWh += *dLdWh0;
if(dLdb0 != nullptr)
*dLdb += *dLdb0;
}
// //////////////////////////////////////////////////////////////////////////
// FIXME - gruTimeLoopBP is not correct
// template <typename T>
// void gruTimeLoopBP(const std::vector<NDArray<T>*>& inArrs, const std::vector<NDArray<T>*>& outArrs) {
// NDArray<T>* x = inArrs[0]; // input [time, bS, iS]
// NDArray<T>* hi = inArrs[1]; // previous/initial cell output [bS, nUn], that is at previous time step t-1
// NDArray<T>* Wx = inArrs[2]; // input-to-hidden weights, [iS, 3*nUn]
// NDArray<T>* Wh = inArrs[3]; // hidden-to-hidden weights, [nUn, 3*nUn]
// NDArray<T>* b = inArrs[4]; // biases, [3*nUn]
// NDArray<T>* dLdh = inArrs[5]; // gradient wrt output, [time, bS, nUn], that is epsilon_next
// NDArray<T>* dLdx = outArrs[0]; // gradient wrt x, [time, bS, iS], that is epsilon
// NDArray<T>* dLdhi = outArrs[1]; // gradient wrt hi, [bS, nUn]
// NDArray<T>* dLdWx = outArrs[2]; // gradient wrt Wx, [iS, 3*nUn]
// NDArray<T>* dLdWh = outArrs[3]; // gradient wrt Wh, [nUn, 3*nUn]
// NDArray<T>* dLdb = outArrs[4]; // gradient wrt b, [3*nUn]
// const Nd4jLong time = x->sizeAt(0);
// const Nd4jLong bS = x->sizeAt(1);
// const Nd4jLong iS = x->sizeAt(2);
// const Nd4jLong nUn = hi->sizeAt(1);
// NDArray<T> h(hi->ordering(), {time, bS, nUn}); // feed forward output
// // first step, time = 0, feed forward
// NDArray<T> x0 = (*x)({{0,1}, {}, {}});
// NDArray<T> h0 = h({{0,1}, {}, {}});
// helpers::gruCell<T>({&x0, hi, Wx, Wh, b}, &h0);
// // first step, time = 0, back prop
// NDArray<T> dLdx0 = (*dLdx)({{0,1}, {}, {}});
// NDArray<T> dLdh0 = (*dLdh)({{0,1}, {}, {}});
// helpers::gruCellBP<T>({&x0, hi, Wx, Wh, b, &dLdh0, nullptr, nullptr, nullptr}, {&dLdx0, dLdhi, dLdWx, dLdWh, dLdb});
// // loop through the rest time steps
// for (Nd4jLong t = time-1; t > 0; --t) {
// for (Nd4jLong t = 1; t < time; ++t) {
// NDArray<T> xt = (*x)({{t,t+1}, {}, {}});
// NDArray<T> ht = h({{t,t+1}, {}, {}});
// NDArray<T> ht_1 = h({{t-1,t}, {}, {}});
// NDArray<T> dLdxt = (*dLdx)({{t,t+1}, {}, {}});
// NDArray<T> dLdht = (*dLdh)({{t,t+1}, {}, {}});
// NDArray<T> dLdWxt_1 = dLdWx;
// NDArray<T> dLdWht_1 = dLdWh;
// NDArray<T> dLdbt_1 = dLdb;
// // feed forward, calculation of ht
// helpers::gruCell<T>({&xt, &ht_1, Wx, Wh, b}, &ht);
// // back prop
// helpers::gruCellBP<T>({&xt, &ht_1, Wx, Wh, b, &dLdht, &dLdWxt_1, &dLdWht_1, &dLdbt_1}, {&dLdxt, nullptr, dLdWx, dLdWh, dLdb});
// }
// }
}
}
}