180 lines
7.6 KiB
Plaintext
180 lines
7.6 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author George A. Shulinok <sgazeos@gmail.com>
|
|
//
|
|
#include <ops/declarable/helpers/qr.h>
|
|
#include <array/NDArrayFactory.h>
|
|
#include <helpers/MmulHelper.h>
|
|
|
|
namespace sd {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static __global__ void matrixMinorKernel(T* outBuffer, Nd4jLong* outShape, T* inBuffer, Nd4jLong* inShape, Nd4jLong column, Nd4jLong rows, Nd4jLong columns) {
|
|
// auto tid = threadIdx.x + blockDim.x * blockIdx.x;
|
|
// auto step = blockDim.x * gridDim.x;
|
|
// if (threadIdx.x == 0) {
|
|
// for (auto i = tid; i < column; i += step) {
|
|
// Nd4jLong diagPos[] = {i, i};
|
|
// auto zIndex = shape::getOffset(outShape, diagPos);
|
|
// outBuffer[zIndex] = T(1.f);
|
|
// }
|
|
// }
|
|
// __syncthreads();
|
|
|
|
for (auto i = blockIdx.x; i < rows; i += gridDim.x)
|
|
for (auto j = threadIdx.x; j < columns; j += blockDim.x) {
|
|
Nd4jLong pos[] = {i,j};
|
|
auto zIndex = shape::getOffset(outShape, pos);
|
|
auto xIndex = shape::getOffset(inShape, pos);
|
|
if (i < column || j < column) {
|
|
outBuffer[zIndex] = i != j?T(0.f):T(1.f);
|
|
}
|
|
else
|
|
outBuffer[zIndex] = inBuffer[xIndex]; //m.t<T>(i,j) = in.t<T>(i,j);
|
|
}
|
|
|
|
|
|
}
|
|
|
|
template <typename T>
|
|
NDArray matrixMinor(LaunchContext* context, NDArray& in, Nd4jLong col) {
|
|
NDArray m = in.ulike();
|
|
m.setIdentity();
|
|
m({col, m.rows(), col, m.columns()}).assign(in({col, m.rows(), col, m.columns()}));
|
|
|
|
// auto stream = context->getCudaStream();
|
|
// matrixMinorKernel<T><<<128, 128, 256, *stream>>>(m.dataBuffer()->specialAsT<T>(), m.specialShapeInfo(),
|
|
// matrixMinorKernel<T><<<128, 128, 256, *stream>>>(m.dataBuffer()->specialAsT<T>(), m.specialShapeInfo(),
|
|
// reinterpret_cast<T*>(in.specialBuffer()), in.specialShapeInfo(), col, in.rows(), in.columns());
|
|
//
|
|
m.tickWriteDevice();
|
|
return m;
|
|
}
|
|
|
|
/* m = I - v v^T */
|
|
template <typename T>
|
|
static __global__ void vmulKernel(T* resBuf, Nd4jLong* resShape, T const* vBuff, Nd4jLong const* vShape, Nd4jLong n) {
|
|
for (auto i = blockIdx.x; i < n; i += gridDim.x)
|
|
for (auto j = threadIdx.x; j < n; j += blockDim.x) {
|
|
Nd4jLong posR[] = {i, j};
|
|
auto indexR = shape::getOffset(resShape, posR);
|
|
auto indexX = shape::getIndexOffset(i, vShape);
|
|
auto indexY = shape::getIndexOffset(j, vShape);
|
|
|
|
resBuf[indexR] = T(-2.f) * vBuff[indexX] * vBuff[indexY] + (i != j?T(0.f):T(1.f));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
NDArray vmul(LaunchContext* context, NDArray const& v, int n)
|
|
{
|
|
NDArray res('c', {n,n}, v.dataType(), context); // x = matrix_new(n, n);
|
|
|
|
auto stream = context->getCudaStream();
|
|
vmulKernel<T><<<128, 128, 128, *stream>>>(res.dataBuffer()->specialAsT<T>(), res.specialShapeInfo(),
|
|
reinterpret_cast<T const*>(v.getSpecialBuffer()), v.getSpecialShapeInfo(), n);
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
static bool diagonalIsPositive(NDArray* matrix, Nd4jLong k) {
|
|
T hVal;
|
|
Nd4jLong pos[] = {k, k};
|
|
auto shift = shape::getOffset(matrix->shapeInfo(), pos);
|
|
cudaMemcpy(&hVal, matrix->specialBuffer(), sizeof(T), cudaMemcpyDeviceToHost);
|
|
return hVal > T(0.f);
|
|
}
|
|
|
|
template <typename T>
|
|
void qrSingle(LaunchContext* context, NDArray* matrix, NDArray* Q, NDArray* R, bool const fullMatricies) {
|
|
Nd4jLong M = matrix->sizeAt(0);
|
|
Nd4jLong N = matrix->sizeAt(1);
|
|
auto resQ = fullMatricies?Q->ulike():NDArrayFactory::create<T>(matrix->ordering(), {M,M}, Q->getContext());
|
|
auto resR = fullMatricies?R->ulike():matrix->ulike();
|
|
std::vector<NDArray> q(M);
|
|
NDArray z = *matrix;
|
|
NDArray e('c', {M}, DataTypeUtils::fromT<T>(), context); // two internal buffers and scalar for squared norm
|
|
for (auto k = 0; k < N && k < M - 1; k++) { // loop for columns, but not further then row number
|
|
e.nullify();
|
|
z = matrixMinor<T>(context, z, k); // minor computing for current column with given matrix z (initally is a input matrix)
|
|
|
|
auto currentColumn = z({0, 0, k, k + 1}); // retrieve k column from z to x buffer
|
|
auto norm = currentColumn.reduceAlongDimension(reduce::Norm2, {0});
|
|
if (diagonalIsPositive<T>(matrix, k)) //matrix->t<T>(k,k) > T(0.f)) // negate on positive matrix diagonal element
|
|
norm.applyTransform(transform::Neg, norm); // *= -1.f;//-norm.t<T>(0);
|
|
|
|
e.p(k, norm); // e - is filled by 0 vector except diagonal element (filled by 1)
|
|
e += currentColumn; // e[i] = x[i] + a * e[i] for each i from 0 to n - 1
|
|
auto normE = e.reduceAlongDimension(reduce::Norm2, {0});
|
|
e /= normE;
|
|
q[k] = vmul<T>(context, e, M);
|
|
auto qQ = z.ulike();
|
|
MmulHelper::matmul(&q[k], &z, &qQ, false, false);
|
|
z = std::move(qQ);
|
|
}
|
|
resQ.assign(q[0]); //
|
|
// MmulHelper::matmul(&q[0], matrix, &resR, false, false);
|
|
for (int i = 1; i < N && i < M - 1; i++) {
|
|
auto tempResQ = resQ;
|
|
MmulHelper::matmul(&q[i], &resQ, &tempResQ, false, false);
|
|
resQ = std::move(tempResQ);
|
|
}
|
|
MmulHelper::matmul(&resQ, matrix, &resR, false, false);
|
|
// resR *= -1.f;
|
|
resQ.transposei();
|
|
|
|
if (fullMatricies) {
|
|
Q->assign(resQ);
|
|
R->assign(resR);
|
|
}
|
|
else {
|
|
Q->assign(resQ({0, 0, 0, N}));
|
|
R->assign(resR({0, N, 0, 0}));
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
void qr_(LaunchContext* context, NDArray const* input, NDArray* outputQ, NDArray* outputR, bool const fullMatricies) {
|
|
Nd4jLong lastDim = input->rankOf() - 1;
|
|
Nd4jLong preLastDim = input->rankOf() - 2;
|
|
|
|
NDArray::prepareSpecialUse({outputQ, outputR}, {input});
|
|
ResultSet listOutQ(outputQ->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
|
|
ResultSet listOutR(outputR->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
|
|
ResultSet listInput(input->allTensorsAlongDimension({(int)preLastDim, (int)lastDim}));
|
|
auto start = 0;
|
|
auto stop = listInput.size();
|
|
auto increment = 1;
|
|
|
|
for (auto batch = start; batch < stop; batch += increment) {
|
|
//qr here
|
|
qrSingle<T>(context, listInput.at(batch), listOutQ.at(batch), listOutR.at(batch), fullMatricies);
|
|
}
|
|
NDArray::registerSpecialUse({outputQ, outputR}, {input});
|
|
}
|
|
|
|
void qr(sd::LaunchContext* context, NDArray const* input, NDArray* outputQ, NDArray* outputR, bool const fullMatricies) {
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), qr_, (context, input, outputQ, outputR, fullMatricies), FLOAT_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|