a6223d307b
* Restore badges for PyPi and Apache license; and edit links. Removed badge for build status as build status for Deeplearning4j overall is not meaningful here. Java-Python coffee image removed as we (probably) don't want to be pointing to the old repo. Apache LICENSE file added for pydatavec as it was not previously included. Signed-off-by: Philip Khor <philip.khor@skymind.my> * move badges to top for consistency Signed-off-by: Philip Khor <philip.khor@skymind.my> * some typos Signed-off-by: Philip Khor <philip.khor@skymind.my> * Add gitter chat link to be consistent with jumpy README Signed-off-by: Philip Khor <philip.khor@skymind.my> |
||
---|---|---|
.. | ||
pydl4j | ||
tests | ||
.gitignore | ||
LICENSE | ||
README.md | ||
pom.xml | ||
pytest.ini | ||
release.sh | ||
setup.py |
README.md
PyDL4J - Java dependency management for Python applications
PyDL4J is a lightweight package manager for the DL4J ecosystem which allows you to focus
on building Python applications on top of pyjnius
without worrying about the details. You
can use PyDL4J for the following tasks:
- Automatically manage JARs for your Python projects, such as
jumpy
orpydatavec
. - Configure your Python DL4J environment through the PyDL4J command line interface,
- Use PyDL4J as a replacement for Maven for basic tasks, from Python.
Installation
PyDL4J is on PyPI, so you can install it with pip
:
pip install pydl4j
Alternatively, you can build the project locally as follows:
git clone https://www.github.com/eclipse/deeplearning4j.git
cd deeplearning4j/pydl4j
python setup.py install
As regular user, this will likely be enough for your needs. In fact, most of the time you will not interact with PyDL4J directly at all. All other Python projects maintained by Skymind use PyDL4J under the hood and will install this dependency for you.
PyDL4J command line interface (CLI)
Installing PyDL4J exposes a command line tool called pydl4j
. You can use this tool to configure
your PyDL4J environment. If you don't use the CLI, a default configuration will be used instead.
Note: If you intend to use the CLI, make sure to have docker
installed
on your machine.
To initialize a new PyDL4J configuration, type
pydl4j init
██████╗ ██╗ ██╗██████╗ ██╗██╗ ██╗ ██╗
██╔══██╗╚██╗ ██╔╝██╔══██╗██║██║ ██║ ██║
██████╔╝ ╚████╔╝ ██║ ██║██║███████║ ██║
██╔═══╝ ╚██╔╝ ██║ ██║██║╚════██║██ ██║
██║ ██║ ██████╔╝███████╗██║╚█████╔╝
╚═╝ ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚════╝
pydl4j is a system to manage your DL4J dependencies from Python!
Which DL4J version do you want to use for your Python projects? (default '1.0.0-beta2'):
Follow the instructions provided by the CLI. At the end of this process you'll see a JSON object carrying your configuration.
This is your current settings file config.json:
{
"dl4j_core": true,
"nd4j_backend": "cpu",
"spark_version": "2",
"datavec": false,
"spark": true,
"scala_version": "2.11",
"dl4j_version": "1.0.0-beta2"
}
Does this look good? (default 'y')[y/n]:
If not configured otherwise, this configuration file will be stored at ~/.deeplearning4j/pydl4j/config.json
. This
configuration file is a lightweight version for Python users to avoid the cognitive load of the widely used
Project Object Model (POM) widely used in Java. PyDL4J will translate your configuration into the right format
internally to provide you with the tools you need.
Finally, to install the Java dependencies configured in your config.json
you use the following command:
pydl4j install
This tool will install all necessary JARs into ~/.deeplearning4j/pydl4j
for you, by running mvn
in a
Docker container, and setting your classpath so that your pyjnius
Python applications can access them.
PyDL4J API
Example
import pydl4j
import jnius_config
from pydl4j import mvn
pydl4j.set_context('my_python_app_name')
# Fetch latest version of datavec.datavec-api from Maven central
pydl4j.mvn_install(group='datavec', artifact='datavec-api')
# Or fetch a specific version:
pydl4j.mvn_install(group='datavec', artifact='datavec-api',
version='1.0.0-beta')
jnius_config.set_classpath(pydl4j.get_dir())
List all artifacts in a group
mvn.get_artifacts(group_id)
Example
mvn.get_artifacts('datavec')
['datavec-api', 'datavec-arrow', 'datavec-camel', 'datavec-cli', 'datavec-data', 'datavec-data-audio', 'datavec-data-codec', 'datavec-d
ata-image', 'datavec-data-nlp', 'datavec-dataframe', 'datavec-excel', 'datavec-geo', 'datavec-hadoop', 'datavec-jdbc', 'datavec-local',
'datavec-nd4j-common', 'datavec-parent', 'datavec-perf', 'datavec-spark-inference-client', 'datavec-spark-inference-model', 'datavec-s
park-inference-parent', 'datavec-spark-inference-server_2.10', 'datavec-spark-inference-server_2.11', 'datavec-spark_2.10', 'datavec-sp
ark_2.11']
List all versions of an artifact
mvn.get_versions(group_id, artifact_id)
Example
mvn.get_versions('datavec', 'datavec-api')
['0.4.0', '0.5.0', '0.6.0', '0.7.0', '0.7.1', '0.7.2', '0.8.0',
'0.9.0', '0.9.1', '1.0.0-alpha', '1.0.0-beta', '1.0.0-beta2']
Get latest version of an artifact
mvn.get_latest_version(group_id, artifact_id)
Example
mvn.get_latest_version('datavec', 'datavec-api')
'1.0.0-beta2'
List all installed jars
pydl4j.get_jars()
Uninstall a jar
# Find jar name from pydl4j.get_jars()
pydl4j.uninstall(jar_name)
Uninstall all jars:
pydl4j.clear_context()