* - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
323 lines
15 KiB
C++
323 lines
15 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
#ifndef CUDA_LAMBDA_HELPER
|
|
#define CUDA_LAMBDA_HELPER
|
|
|
|
#include <pointercast.h>
|
|
#include <op_boilerplate.h>
|
|
#include <helpers/shape.h>
|
|
#include <cuda.h>
|
|
#include <cuda_runtime.h>
|
|
|
|
static Nd4jLong __device__ __noinline__ __getIndexOffset(Nd4jLong index, Nd4jLong *shapeInfo) {
|
|
return shape::getIndexOffset(index, shapeInfo);
|
|
}
|
|
|
|
static Nd4jLong __device__ __noinline__ __length(Nd4jLong *shapeInfo) {
|
|
return shape::length(shapeInfo);
|
|
}
|
|
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaKernel(void* vx, Nd4jLong *xShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaIndexedKernel(void* vx, Nd4jLong *xShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaIndexedPairwiseKernel(void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaPairwiseKernel(void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda);
|
|
template <typename T, typename Lambda> static _CUDA_G void lambdaTriplewiseKernel(void* vw, Nd4jLong *wShapeInfo, void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda);
|
|
|
|
template <typename T>
|
|
class LambdaHelper {
|
|
public:
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaLauncher(cudaStream_t *stream, void* vx, Nd4jLong *xShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaIndexedLauncher(cudaStream_t *stream, void* vx, Nd4jLong *xShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaIndexedKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyIndexedLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaPairwiseLauncher(cudaStream_t *stream, void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaPairwiseKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyPairwiseLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaIndexedPairwiseLauncher(cudaStream_t *stream, void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaIndexedPairwiseKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyIndexedPairwiseLambda execution failed");
|
|
}
|
|
|
|
template <typename Lambda>
|
|
FORCEINLINE static void lambdaTriplewiseLauncher(cudaStream_t *stream, void* vw, Nd4jLong *wShapeInfo, void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
lambdaTriplewiseKernel<T, Lambda><<<256, 512, 1024, *stream>>>(vw, wShapeInfo, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo, lambda);
|
|
auto err = cudaStreamSynchronize(*stream);
|
|
if (err != 0)
|
|
throw std::runtime_error("NDArray::applyTriplewiseLambda execution failed");
|
|
}
|
|
};
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaKernel(void* vx, Nd4jLong *xShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = __length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && zEws >= 1 && xOrder == zOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(x[e * xEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = __getIndexOffset(e, xShapeInfo);
|
|
auto zOffset = __getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(x[xOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaIndexedKernel(void* vx, Nd4jLong *xShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = __length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && zEws >= 1 && xOrder == zOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(e, x[e * xEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = __getIndexOffset(e, xShapeInfo);
|
|
auto zOffset = __getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(e, x[xOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaIndexedPairwiseKernel(void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
auto y = reinterpret_cast<T*>(vy);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto yEws = shape::elementWiseStride(yShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto yOrder = shape::order(yShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = __length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && yEws >= 1 && zEws >= 1 && xOrder == zOrder && yOrder == xOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(e, x[e * xEws], y[e * yEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = __getIndexOffset(e, xShapeInfo);
|
|
auto yOffset = __getIndexOffset(e, yShapeInfo);
|
|
auto zOffset = __getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(e, x[xOffset], y[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaPairwiseKernel(void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
auto y = reinterpret_cast<T*>(vy);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto yEws = shape::elementWiseStride(yShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto yOrder = shape::order(yShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = __length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (xEws >= 1 && yEws >= 1 && zEws >= 1 && xOrder == zOrder && yOrder == xOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(x[e * xEws], y[e * yEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto xOffset = __getIndexOffset(e, xShapeInfo);
|
|
auto yOffset = __getIndexOffset(e, yShapeInfo);
|
|
auto zOffset = __getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(x[xOffset], y[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template <typename T, typename Lambda>
|
|
static _CUDA_G void lambdaTriplewiseKernel(void* vw, Nd4jLong *wShapeInfo, void* vx, Nd4jLong *xShapeInfo, void* vy, Nd4jLong *yShapeInfo, void *vz, Nd4jLong *zShapeInfo, Lambda lambda) {
|
|
auto w = reinterpret_cast<T*>(vw);
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
auto y = reinterpret_cast<T*>(vy);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
auto wEws = shape::elementWiseStride(wShapeInfo);
|
|
auto xEws = shape::elementWiseStride(xShapeInfo);
|
|
auto yEws = shape::elementWiseStride(yShapeInfo);
|
|
auto zEws = shape::elementWiseStride(zShapeInfo);
|
|
|
|
auto wOrder = shape::order(wShapeInfo);
|
|
auto xOrder = shape::order(xShapeInfo);
|
|
auto yOrder = shape::order(yShapeInfo);
|
|
auto zOrder = shape::order(zShapeInfo);
|
|
|
|
auto zLength = __length(zShapeInfo);
|
|
|
|
auto tid = threadIdx.x + blockIdx.x * blockDim.x;
|
|
|
|
if (wEws > 1 && xEws >= 1 && yEws >= 1 && zEws >= 1 && xOrder == zOrder && yOrder == xOrder && wOrder == xOrder) {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x)
|
|
z[e * zEws] = lambda(w[e * wEws], x[e * xEws], y[e * yEws]);
|
|
} else {
|
|
for (uint e = tid; e < zLength; e += blockDim.x * gridDim.x) {
|
|
auto wOffset = __getIndexOffset(e, wShapeInfo);
|
|
auto xOffset = __getIndexOffset(e, xShapeInfo);
|
|
auto yOffset = __getIndexOffset(e, yShapeInfo);
|
|
auto zOffset = __getIndexOffset(e, zShapeInfo);
|
|
|
|
z[zOffset] = lambda(w[wOffset], x[xOffset], y[yOffset]);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename Lambda>
|
|
void NDArray::applyLambda(Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
|
|
if (dtype != target.dataType())
|
|
throw std::runtime_error("NDArray::applyLambda X/Z data types must be the same");
|
|
//throw datatype_exception::build("NDArray::applyLambda X/Z data types must be the same", dtype, target.dataType());
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename Lambda>
|
|
void NDArray::applyPairwiseLambda(const NDArray& other, Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
|
|
if (dtype != target.dataType() || dtype != other.dataType())
|
|
throw std::runtime_error("NDArray::applyPairwiseLambda X/Y/Z data types must be the same");
|
|
//throw datatype_exception::build("NDArray::applyLambda X/Z data types must be the same", dtype, target.dataType());
|
|
|
|
prepareSpecialUse({&target}, {this, &other});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaPairwiseLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), other.getSpecialBuffer(), other.getSpecialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this, &other});
|
|
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename Lambda>
|
|
void NDArray::applyIndexedLambda(Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
if (dtype != target.dataType())
|
|
throw std::runtime_error("NDArray::applyIndexedLambda X/Z data types must be the same");
|
|
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaIndexedLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename Lambda>
|
|
void NDArray::applyIndexedPairwiseLambda(NDArray& other, Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
if (dtype != target.dataType() || dtype != other.dataType())
|
|
throw std::runtime_error("NDArray::applyIndexedPairwiseLambda X/Y/Z data types must be the same");
|
|
|
|
prepareSpecialUse({&target}, {this, &other});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaIndexedPairwiseLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), other.getSpecialBuffer(), other.getSpecialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this, &other});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename Lambda>
|
|
void NDArray::applyTriplewiseLambda(NDArray& second, NDArray& third, Lambda func, NDArray& target) {
|
|
|
|
auto dtype = this->dataType();
|
|
|
|
if (dtype != target.dataType() || dtype != second.dataType() || dtype != third.dataType())
|
|
throw std::runtime_error("NDArray::applyTriplewiseLambda X/Y/Z data types must be the same");
|
|
|
|
prepareSpecialUse({&target}, {this, &second, &third});
|
|
BUILD_SINGLE_SELECTOR(dtype, LambdaHelper ,::lambdaTriplewiseLauncher(this->_context->getCudaStream(), this->specialBuffer(), this->specialShapeInfo(), second.specialBuffer(), second.specialShapeInfo(), third.specialBuffer(), third.specialShapeInfo(), target.specialBuffer(), target.specialShapeInfo(), func), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this, &second, &third});
|
|
}
|
|
|
|
|
|
|
|
|
|
|