* - specifying template instantiation for certain types in float16 and bloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - polishing bfloat16 and float16 member functions template specialization Signed-off-by: Yurii <iuriish@yahoo.com> * - rewrite and overload array +-*/ scalar and scalar +-*/ arr in NDAray class Signed-off-by: Yurii <iuriish@yahoo.com> * - make corrections which have to do with and rvalue lvalue conversions Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantic in NDArray operators array +-/* array Signed-off-by: Yurii <iuriish@yahoo.com> * float16/bfloat16 tweaks Signed-off-by: raver119 <raver119@gmail.com> * one more tweak Signed-off-by: raver119 <raver119@gmail.com> * - make float16 and bfloat16 to compile successfully on cuda Signed-off-by: Yurii <iuriish@yahoo.com> * - do not use resources of view-like arrays when move semantics is applied Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of pointers in signatures NDArray methods 1 Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::dup method Signed-off-by: Yurii <iuriish@yahoo.com> * - correction of signature of NDArray::reduceAlongDimension method Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyIndexReduce and applyTrueBroadcast methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyReduce3 and varianceAlongDimension methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tensorsAlongDimension and diagonal methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::allTensorsAlongDimension Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduceAlongDimension 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyPairwiseTransform 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyTrueBroadcast 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::applyScalar and applyScalarArr Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::lambda methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::reduce3 methods 2 Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of following NDArray methods: add/sub/mul/div row/column and fillAsTriangular Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::tileToShape methods Signed-off-by: Yurii <iuriish@yahoo.com> * - signature correction of NDArray::isShapeSameStrict method Signed-off-by: Yurii <iuriish@yahoo.com> * minor corrections in tests Signed-off-by: Yurii <iuriish@yahoo.com> * - replace reduce op in batchnorm mkldnn Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit templates instantiations for operator+(NDArray&&. const scalar) Signed-off-by: Yurii <iuriish@yahoo.com> * - corrections of casts in float16/bfloat16 Signed-off-by: Yurii <iuriish@yahoo.com> * - provide move semantics in following NDArray methods: transform, applyTrueBroadcast, transpose, reshape, permute Signed-off-by: Yurii <iuriish@yahoo.com> * - get rid of input array A duplicate in svd cuda op Signed-off-by: Yurii <iuriish@yahoo.com> * - avoid available bug in svd cuda API Signed-off-by: Yurii <iuriish@yahoo.com> * - add temporary global memory buffer in svd cuda when calcUV = false and m != n Signed-off-by: Yurii <iuriish@yahoo.com> * - remove test with blfoat16 type for betainC Signed-off-by: Yurii <iuriish@yahoo.com> * - resolve conflicts after master has been merged in Signed-off-by: Yurii <iuriish@yahoo.com> * - changed type of affected input array in fused_batch_norm Signed-off-by: Yurii <iuriish@yahoo.com> * - add several explicit type castings Signed-off-by: Yurii <iuriish@yahoo.com> * - add ND4J_EXPORT to operators Signed-off-by: Yurii <iuriish@yahoo.com> * - add explicit template types in instantiations of template arithm operators of NDArray class Signed-off-by: Yurii <iuriish@yahoo.com> * - one more test fix Signed-off-by: Yurii <iuriish@yahoo.com> Co-authored-by: raver119 <raver119@gmail.com>
332 lines
18 KiB
C++
332 lines
18 KiB
C++
|
|
|
|
|
|
template<typename T>
|
|
void NDArray::applyTriplewiseLambda(NDArray& second, NDArray& third, const std::function<T(T, T, T)>& func, NDArray& target) {
|
|
|
|
if(dataType() != DataTypeUtils::fromT<T>())
|
|
throw std::runtime_error("NDArray::applyTriplewiseLambda<T> method: wrong template parameter T, its type should be the same as type of this array!");
|
|
if(dataType() != second.dataType() || dataType() != third.dataType() || dataType() != target.dataType())
|
|
throw std::runtime_error("NDArray::applyTriplewiseLambda<T> method: bother four arrays (this, second, third, target) should have the same type !");
|
|
|
|
if (this->lengthOf() != second.lengthOf() || this->lengthOf() != third.lengthOf() || !this->isSameShape(second) || !this->isSameShape(third)) {
|
|
nd4j_printf("applyPairwiseLambda requires both operands to have the same shape\n","");
|
|
throw std::runtime_error("Shapes mismach");
|
|
}
|
|
|
|
auto f = this->bufferAsT<T>();
|
|
auto s = second.bufferAsT<T>();
|
|
auto t = third.bufferAsT<T>();
|
|
auto z = target.bufferAsT<T>();
|
|
|
|
if (this->ordering() == second.ordering() && this->ordering() == third.ordering() && this->ordering() == target.ordering() && (this->ews() == 1 && target.ews() == 1) && this->ews() == second.ews() && this->ews() == third.ews()) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment)
|
|
z[e] = func(f[e], s[e], t[e]);
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
if (f == z) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto tOffset = this->getOffset(e);
|
|
auto uOffset = second.getOffset(e);
|
|
auto vOffset = third.getOffset(e);
|
|
|
|
f[tOffset] = func(f[tOffset], s[uOffset], t[vOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto tOffset = this->getOffset(e);
|
|
auto uOffset = second.getOffset(e);
|
|
auto vOffset = third.getOffset(e);
|
|
auto zOffset = target.getOffset(e);
|
|
|
|
z[zOffset] = func(f[tOffset], s[uOffset], t[vOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
}
|
|
}
|
|
}
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<double (double, double, double)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<float (float, float, float)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<float16 (float16, float16, float16)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<bfloat16 (bfloat16, bfloat16, bfloat16)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<Nd4jLong (Nd4jLong, Nd4jLong, Nd4jLong)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<int (int, int, int)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<int16_t (int16_t, int16_t, int16_t)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<uint8_t (uint8_t, uint8_t, uint8_t)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<uint16_t (uint16_t, uint16_t, uint16_t)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<uint32_t (uint32_t, uint32_t, uint32_t)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<uint64_t (uint64_t, uint64_t, uint64_t)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<int8_t (int8_t, int8_t, int8_t)>& func, NDArray& target);
|
|
template void NDArray::applyTriplewiseLambda(NDArray& second, NDArray &third, const std::function<bool (bool, bool, bool)>& func, NDArray& target);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<T(T, T)>& func, NDArray& target) {
|
|
|
|
if(dataType() != DataTypeUtils::fromT<T>())
|
|
throw std::runtime_error("NDArray::applyPairwiseLambda<T> method: wrong template parameter T, its type should be the same as type of this array!");
|
|
if(dataType() != other.dataType() || dataType() != target.dataType())
|
|
throw std::runtime_error("NDArray::applyPairwiseLambda<T> method: all three arrays (this, other, target) must have the same type !");
|
|
|
|
if (this->lengthOf() != other.lengthOf()) {
|
|
nd4j_printf("applyPairwiseLambda requires both operands to have the same shape\n","");
|
|
throw std::runtime_error("Shapes mismach");
|
|
}
|
|
|
|
auto f = this->bufferAsT<T>();
|
|
auto s = other.bufferAsT<T>();
|
|
auto z = target.bufferAsT<T>();
|
|
|
|
if (this->ordering() == other.ordering() && this->ordering() == target.ordering() && (this->ews() == 1 && target.ews() == 1) && this->ews() == other.ews()) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment)
|
|
z[e] = func(f[e], s[e]);
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
if (f == z) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
auto yOffset = other.getOffset(e);
|
|
|
|
f[xOffset] = func(f[xOffset], s[yOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
auto yOffset = other.getOffset(e);
|
|
auto zOffset = target.getOffset(e);
|
|
|
|
z[zOffset] = func(f[xOffset], s[yOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
}
|
|
}
|
|
}
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<double (double, double)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<float (float, float)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<float16 (float16, float16)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<bfloat16 (bfloat16, bfloat16)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<Nd4jLong (Nd4jLong, Nd4jLong)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<int (int, int)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<int16_t (int16_t, int16_t)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<uint8_t (uint8_t, uint8_t)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<uint16_t (uint16_t, uint16_t)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<uint32_t (uint32_t, uint32_t)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<uint64_t (uint64_t, uint64_t)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<int8_t (int8_t, int8_t)>& func, NDArray& target);
|
|
template void NDArray::applyPairwiseLambda(const NDArray& other, const std::function<bool (bool, bool)>& func, NDArray& target);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::applyLambda(const std::function<T(T)>& func, NDArray& target) {
|
|
|
|
if(dataType() != DataTypeUtils::fromT<T>())
|
|
throw std::runtime_error("NDArray::applyLambda<T> method: wrong template parameter T, its type should be the same as type of this array!");
|
|
if(dataType() != target.dataType())
|
|
throw std::runtime_error("NDArray::applyLambda<T> method: types of this and target array should match !");
|
|
|
|
auto f = this->bufferAsT<T>();
|
|
auto z = target.bufferAsT<T>();
|
|
|
|
if (this->ordering() == target.ordering() && (this->ews() == 1 && target.ews() == 1)) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment)
|
|
z[e] = func(f[e]);
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
if (f == z) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
|
|
f[xOffset] = func(f[xOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
auto zOffset = target.getOffset(e);
|
|
|
|
z[zOffset] = func(f[xOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
}
|
|
}
|
|
}
|
|
template void NDArray::applyLambda(const std::function<double(double)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<float(float)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<float16(float16)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<bfloat16(bfloat16)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<Nd4jLong(Nd4jLong)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<int16_t(int16_t)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<int32_t(int32_t)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<uint8_t(uint8_t)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<uint16_t(uint16_t)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<uint32_t(uint32_t)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<uint64_t(uint64_t)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<int8_t(int8_t)>& func, NDArray& target);
|
|
template void NDArray::applyLambda(const std::function<bool(bool)>& func, NDArray& target);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::applyIndexedLambda(const std::function<T(Nd4jLong, T)>& func, NDArray& target) {
|
|
|
|
if(dataType() != DataTypeUtils::fromT<T>())
|
|
throw std::runtime_error("NDArray::applyIndexedLambda<T> method: wrong template parameter T, its type should be the same as type of this array!");
|
|
if(dataType() != target.dataType())
|
|
throw std::runtime_error("NDArray::applyIndexedLambda<T> method: types of this and target array should match !");
|
|
|
|
auto f = this->bufferAsT<T>();
|
|
auto z = target.bufferAsT<T>();
|
|
|
|
if (this->ordering() == target.ordering() && (this->ews() == 1 && target.ews() == 1)) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment)
|
|
z[e] = func(e, f[e]);
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
if (f == z) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
|
|
f[xOffset] = func(e, f[xOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
auto zOffset = target.getOffset(e);
|
|
|
|
z[zOffset] = func(e, f[xOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
}
|
|
}
|
|
}
|
|
template void NDArray::applyIndexedLambda(const std::function<double(Nd4jLong, double)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<float(Nd4jLong, float)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<float16(Nd4jLong, float16)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<bfloat16(Nd4jLong, bfloat16)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<Nd4jLong(Nd4jLong, Nd4jLong)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<int(Nd4jLong, int)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<int16_t(Nd4jLong, int16_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<uint8_t (Nd4jLong, uint8_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<uint16_t (Nd4jLong, uint16_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<uint32_t (Nd4jLong, uint32_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<uint64_t (Nd4jLong, uint64_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<int8_t(Nd4jLong, int8_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedLambda(const std::function<bool(Nd4jLong, bool)>& func, NDArray& target);
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<T(Nd4jLong, T, T)>& func, NDArray& target) {
|
|
|
|
if(dataType() != DataTypeUtils::fromT<T>())
|
|
throw std::runtime_error("NDArray::applyIndexedPairwiseLambda<T> method: wrong template parameter T, its type should be the same as type of this array!");
|
|
if(dataType() != target.dataType())
|
|
throw std::runtime_error("NDArray::applyIndexedPairwiseLambda<T> method: types of this and target array should match !");
|
|
if (this->lengthOf() != other.lengthOf()) {
|
|
nd4j_printf("applyIndexedPairwiseLambda requires both operands to have the same shape\n","");
|
|
throw std::runtime_error("Shapes mismach");
|
|
}
|
|
|
|
auto f = this->bufferAsT<T>();
|
|
auto s = other.bufferAsT<T>();
|
|
auto z = target.bufferAsT<T>();
|
|
|
|
if (this->ordering() == other.ordering() && this->ordering() == target.ordering() && (this->ews() == 1 && target.ews() == 1) && this->ews() == other.ews()) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment)
|
|
z[e] = func((Nd4jLong) e, f[e], s[e]);
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
if (f == z) {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
auto yOffset = other.getOffset(e);
|
|
|
|
f[xOffset] = func((Nd4jLong) e, f[xOffset], s[yOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
} else {
|
|
|
|
auto loop = PRAGMA_THREADS_FOR {
|
|
for (auto e = start; e < stop; e += increment) {
|
|
auto xOffset = this->getOffset(e);
|
|
auto yOffset = other.getOffset(e);
|
|
auto zOffset = target.getOffset(e);
|
|
|
|
z[zOffset] = func((Nd4jLong) e, f[xOffset], s[yOffset]);
|
|
}
|
|
};
|
|
|
|
samediff::Threads::parallel_for(loop, 0, _length);
|
|
}
|
|
}
|
|
}
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<double (Nd4jLong, double, double)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<float (Nd4jLong, float, float)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<float16 (Nd4jLong, float16, float16)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<bfloat16 (Nd4jLong, bfloat16, bfloat16)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<Nd4jLong (Nd4jLong, Nd4jLong, Nd4jLong)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<int (Nd4jLong, int, int)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<int16_t (Nd4jLong, int16_t, int16_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<uint8_t (Nd4jLong, uint8_t, uint8_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<uint16_t (Nd4jLong, uint16_t, uint16_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<uint32_t (Nd4jLong, uint32_t, uint32_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<uint64_t (Nd4jLong, uint64_t, uint64_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<int8_t (Nd4jLong, int8_t, int8_t)>& func, NDArray& target);
|
|
template void NDArray::applyIndexedPairwiseLambda(NDArray& other, const std::function<bool (Nd4jLong, bool, bool)>& func, NDArray& target); |