Go to file
shugeo 009007120b Shugeo_release_fixes3 (#81)
* Implementation for non_max_suppression_v3 was added. Initial version

* Added check for overcome threshold.

* Added definition for V3 method.

* java remapping for NonMaxSuppressionV3

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed proporly processing of an empty output and test.

* Refactored op to less threshold data to float.

* Implemented cuda-based helper for non_max_suppression_v3 op.

* Fixed fake_quant_with_min_max_vars op.

* Fixed tests with float numbers.

* - assert now stops execution
- sortByKey/sortByValue now have input validation

Signed-off-by: raver119 <raver119@gmail.com>

* missing var

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed proper processing for zero max_size inputs.

* Refactored kernel callers.

* Fixed return statement for logdet op helper.

* Refactored unsorted segment SqrtN op.

* get back 8 tail bytes on CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* Refactored segment prod ops and helpers for cuda and tests.

* Additional test.

* CudaWorkspace tests updated for 8 tail bytes

Signed-off-by: raver119 <raver119@gmail.com>

* special atomic test

Signed-off-by: raver119 <raver119@gmail.com>

* atomicMul/atomicDiv fix for 16bit values

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated waste prints.
2019-11-28 21:08:51 +03:00
.github Update contributing and issue/PR templates (#7934) 2019-06-22 16:21:27 +10:00
arbiter DL4J Time Distributed + fixes + Vertx module profiles fix (#78) 2019-11-25 16:00:21 +11:00
datavec Various fixes (#43) 2019-11-14 19:38:20 +11:00
deeplearning4j Update shaded Jackson version to 2.10.1 (#82) 2019-11-26 19:24:38 +11:00
docs Merge 2019-11-16 23:21:45 +11:00
gym-java-client RL4J: Make a few fixes (#8303) 2019-10-31 13:41:52 +09:00
jumpy Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
libnd4j Shugeo_release_fixes3 (#81) 2019-11-28 21:08:51 +03:00
nd4j Shugeo_release_fixes3 (#81) 2019-11-28 21:08:51 +03:00
nd4s [WIP] Weekly update of repo (#8390) 2019-11-13 17:15:18 +03:00
pydatavec fix pydatavec for python 3... and python2 install problems (#8422) 2019-11-20 08:20:04 +01:00
pydl4j Fix backend dependencies for tests (#189) 2019-08-29 12:54:48 +09:00
rl4j Various fixes (#43) 2019-11-14 19:38:20 +11:00
scalnet fix link to scalnet examples (#8354) 2019-11-05 11:12:08 +11:00
.gitignore fix pydatavec for python 3... and python2 install problems (#8422) 2019-11-20 08:20:04 +01:00
CONTRIBUTING.md Various fixes (#43) 2019-11-14 19:38:20 +11:00
Jenkinsfile Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
LICENSE Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
README.md Update links to eclipse repos (#252) 2019-09-10 19:09:46 +10:00
change-cuda-versions.sh Update dependencies to just released JavaCPP and JavaCV 1.5.2 2019-11-07 17:57:34 +09:00
change-scala-versions.sh Version upgrades (#199) 2019-08-30 14:35:27 +10:00
perform-release.sh Eclipse Migration Initial Commit 2019-06-06 15:21:15 +03:00
pom.xml Update shaded Jackson version to 2.10.1 (#82) 2019-11-26 19:24:38 +11:00

README.md

Monorepo of Deeplearning4j

Welcome to the new monorepo of Deeplearning4j that contains the source code for all the following projects, in addition to the original repository of Deeplearning4j moved to deeplearning4j:

To build everything, we can use commands like

./change-cuda-versions.sh x.x
./change-scala-versions.sh 2.xx
./change-spark-versions.sh x
mvn clean install -Dmaven.test.skip -Dlibnd4j.cuda=x.x -Dlibnd4j.compute=xx

or

mvn -B -V -U clean install -pl '!jumpy,!pydatavec,!pydl4j' -Dlibnd4j.platform=linux-x86_64 -Dlibnd4j.chip=cuda -Dlibnd4j.cuda=9.2 -Dlibnd4j.compute=<your GPU CC> -Djavacpp.platform=linux-x86_64 -Dmaven.test.skip=true

An example of GPU "CC" or compute capability is 61 for Titan X Pascal.

Want some examples?

We have separate repository with various examples available: https://github.com/eclipse/deeplearning4j-examples

In the examples repo, you'll also find a tutorial series in Zeppelin: https://github.com/eclipse/deeplearning4j-examples/tree/master/tutorials