* fix pad javadoc and @see links. (#72) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * [WIP] More fixes (#73) * special tests for ConstantTadHelper/ConstantShapeHelper Signed-off-by: raver119 <raver119@gmail.com> * release methods for data buffers Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary TadPack C++/Java side (#74) Signed-off-by: raver119 <raver119@gmail.com> * Zoo model TF import test updates (#75) * argLine fix, update compression_gru comment * updated comment for xception * undid but commented argLine change * updated xlnet comment * copyright headers * - new NDArray methods like()/ulike() (#77) - fix for depthwise_conv2d_bp + special test Signed-off-by: raver119 <raver119@gmail.com> * upsampling2d fix CUDA Signed-off-by: raver119 <raver119@gmail.com> * DL4J trace logging (#79) * MLN/CG trace logging for debugging Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tiny tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * strided_slice_bp shape fn leak fix Signed-off-by: raver119 <raver119@gmail.com> * SameDiff fixes and naming (#78) * remove SDVariable inplace methods * import methods * npe fix in OpVal * removed SameDiff inplace ops from tests * Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything * quick fixes * javadoc * SDVariable eval with placeholders * use regex match * better matching * initial commit Signed-off-by: raver119 <raver119@gmail.com> * initial commit Signed-off-by: raver119 <raver119@gmail.com> * fix javadoc. (#76) * fix javadoc. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace most @see with @link s. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * 4 additional tests Signed-off-by: raver119 <raver119@gmail.com> * launch context reorganization Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext reorganization Signed-off-by: raver119 <raver119@gmail.com> * per-device LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * Various DL4J/ND4J fixes (#81) * #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Refactor NativeOps.h to export C functions * Actually export functions from NativeOps.h * Adapt the Java wrappers in ND4J generated with JavaCPP * Create C wrappers for some of the C++ classes currently used by ND4J * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * remove duplicate code in createBufferDetached. (#83) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Keras model import - updater lr fix (#84) * Keras model import - updater lr fix Signed-off-by: eraly <susan.eraly@gmail.com> * Keras model import - updater lr fix, cleanup Signed-off-by: eraly <susan.eraly@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Fix functions of OpaqueVariablesSet * thread-local buffers/affinity Signed-off-by: raver119 <raver119@gmail.com> * thread safety for LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * more of thread safety Signed-off-by: raver119 <raver119@gmail.com> * one more multi threaded test Signed-off-by: raver119 <raver119@gmail.com> * SameDiff Convolution Config validation, better output methods (#82) * Conv Config validation & tests Signed-off-by: Ryan Nett <rnett@skymind.io> * stackOutputs utility method Signed-off-by: Ryan Nett <rnett@skymind.io> * use constructor for validation, support negative kernel sizes (infered from weights) Signed-off-by: Ryan Nett <rnett@skymind.io> * better output methods Signed-off-by: Ryan Nett <rnett@skymind.io> * move output to be with fit and evaluate Signed-off-by: Ryan Nett <rnett@skymind.io> * fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * more fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * refactor duplicate code from pad methods. (#86) * refactor duplicate code from pad methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace switch with if. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes and improvements (#87) * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6488 ElementWiseVertex broadcast support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Constructors and broadcast supported it Transforms.max/min Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8054 ElementWiseVertex now supports broadcast inputs Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8057 Nd4j.create overload dtype fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7551 ND4J Shape validation fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Numpy boolean import (#91) * numpy bool type Signed-off-by: raver119 <raver119@gmail.com> * numpy bool java side Signed-off-by: raver119 <raver119@gmail.com> * remove create method with unused parameter. (#89) * remove create method with unused parameter. * removed more unused methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * removing more unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * last removal of unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * remove createSparse methods. (#92) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes (#90) * Deprecate Old*Op instances Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8063 #8054 Broadcast exceptions + cleanup inplace ops Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove bad test condition Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7993 Fix shape function issue in crop_and_resize op Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J SameDiff lambda layer fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8029 Fix for pnorm backprop math Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8038 Fix Op profiler NaN/Inf triggering + add tests (#93) Signed-off-by: AlexDBlack <blacka101@gmail.com> * createUninitializedDetached refactoring. (#94) * wip * update interface, add null implementations. * Breaking one test in a weird way. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * createUninitializedDetached refactored. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * cuda build fix for issues introduced by recent refactoring Signed-off-by: raver119 <raver119@gmail.com> * [WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io> * build fix Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI (#97) Signed-off-by: raver119 <raver119@gmail.com> * temporary stack fix Signed-off-by: raver119 <raver119@gmail.com> * round robin affinity test Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy CudaContext methods Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy ContextPool classes/methods Signed-off-by: raver119 <raver119@gmail.com> * one legacy test removed Signed-off-by: raver119 <raver119@gmail.com> * few more fields rearranged Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext++ Signed-off-by: raver119 <raver119@gmail.com> * more of OpaqueLaunchContext methods Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext -> CudaContext Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * cusolver handles Signed-off-by: raver119 <raver119@gmail.com> * typo Signed-off-by: raver119 <raver119@gmail.com> * cusolver method Signed-off-by: raver119 <raver119@gmail.com> * cusolver handle propagated Signed-off-by: raver119 <raver119@gmail.com> * blas/solver handles Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * legacy concat implementations replaced with new CustomOp Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * concat now uses way more blocks Signed-off-by: raver119 <raver119@gmail.com> * print Signed-off-by: raver119 <raver119@gmail.com> * no more triple template mmul Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bitonic sort reorganized Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * type conversions moved to generic impl Signed-off-by: raver119 <raver119@gmail.com> * cpu data types pass Signed-off-by: raver119 <raver119@gmail.com> * non_max_suppression Signed-off-by: raver119 <raver119@gmail.com> * sortByValue fix Signed-off-by: raver119 <raver119@gmail.com> * ignore all mixed datatype tests for mmul Signed-off-by: raver119 <raver119@gmail.com> * special handling of OpProfiler exceptions Signed-off-by: raver119 <raver119@gmail.com> * - one failing concat test in cpp - Nd4j.tile now uses op internally Signed-off-by: raver119 <raver119@gmail.com> * get back dtype exception for legacy arrays deserialization Signed-off-by: raver119 <raver119@gmail.com>
777 lines
28 KiB
C++
777 lines
28 KiB
C++
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// Created by raver119 on 16.10.2017.
|
|
//
|
|
|
|
#include "testlayers.h"
|
|
#include <NDArray.h>
|
|
#include <ShapeUtils.h>
|
|
#include <reduce3.h>
|
|
#include <ops/declarable/LegacyTransformOp.h>
|
|
#include <ops/declarable/LegacyPairwiseTransformOp.h>
|
|
#include <ops/declarable/LegacyScalarOp.h>
|
|
#include <ops/declarable/LegacyReduceSameOp.h>
|
|
#include <ops/declarable/LegacyReduceFloatOp.h>
|
|
#include <ops/declarable/LegacyIndexReduceOp.h>
|
|
#include <ops/declarable/LegacyBroadcastOp.h>
|
|
#include <helpers/TAD.h>
|
|
#include <helpers/ConstantTadHelper.h>
|
|
|
|
using namespace nd4j;
|
|
using namespace nd4j::ops;
|
|
|
|
class LegacyOpsTests : public testing::Test {
|
|
|
|
};
|
|
|
|
|
|
TEST_F(LegacyOpsTests, TransformTests_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(1.0);
|
|
auto z = NDArrayFactory::create<float>('c', {5,5});
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
exp.assign(-1.0);
|
|
|
|
nd4j::ops::LegacyTransformSameOp op(transform::Neg); // Neg
|
|
auto status = op.execute({&x}, {&z}, {}, {}, {});
|
|
ASSERT_EQ(status, ND4J_STATUS_OK);
|
|
//z.printIndexedBuffer("Output NEG");
|
|
ASSERT_TRUE(z.equalsTo(&exp));
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, TransformTests_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(1.0);
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
exp.assign(-1.0);
|
|
|
|
nd4j::ops::LegacyTransformSameOp op(transform::Neg); // Neg
|
|
auto result = op.execute({&x}, {}, {});
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
auto z = result->at(0);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
delete result;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Reciprocal_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(2.0f);
|
|
|
|
auto ethalon = NDArrayFactory::create<float>('c', {5, 5});
|
|
ethalon.assign(0.5f);
|
|
|
|
nd4j::ops::LegacyTransformSameOp op(transform::Reciprocal); // Reciprocal
|
|
Nd4jStatus status = op.execute({&x}, {&x}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
ASSERT_TRUE(ethalon.equalsTo(&x));
|
|
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, PWT_Tests_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(2.0);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {5, 5});
|
|
y.assign(3.0);
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
exp.assign(6.0);
|
|
|
|
nd4j::ops::LegacyPairwiseTransformOp op(pairwise::Multiply); // Multiply
|
|
Nd4jStatus status = op.execute({&x, &y}, {&x}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(&x));
|
|
|
|
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, PWT_Tests_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(2.0);
|
|
|
|
auto y = NDArrayFactory::create<float>('c', {5, 5});
|
|
y.assign(3.0);
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
exp.assign(6.0);
|
|
|
|
nd4j::ops::LegacyPairwiseTransformOp op(pairwise::Multiply); // Multiply
|
|
auto result = op.execute({&x, &y}, {}, {});
|
|
|
|
auto z = result->at(0);
|
|
|
|
//z->printBuffer("Z");
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
delete result;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Scalar_Test_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(2.0);
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
exp.assign(7.0);
|
|
|
|
nd4j::ops::LegacyScalarOp op(scalar::Add);
|
|
op.execute({&x}, {&x}, {5.0}, {}, {}); //
|
|
|
|
ASSERT_TRUE(exp.equalsTo(&x));
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Scalar_Test_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(2.0);
|
|
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
exp.assign(7.0);
|
|
|
|
auto y = NDArrayFactory::create<float>(5.0f);
|
|
|
|
nd4j::ops::LegacyScalarOp op(scalar::Add, y);
|
|
auto result = op.execute({&x}, {}, {});
|
|
|
|
auto z = result->at(0);
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
delete result;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(1.0);
|
|
int opNum = reduce::Sum;
|
|
nd4j::ops::LegacyReduceSameOp op(opNum);
|
|
|
|
auto result = op.execute({&x}, {}, {});
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
auto z = result->at(0);
|
|
// z->printBuffer("ReduceTest1");
|
|
ASSERT_TRUE(z->isScalar());
|
|
ASSERT_NEAR(x.sumNumber().e<float>(0), z->e<float>(0), 1e-5f);
|
|
|
|
delete result;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(1.0);
|
|
|
|
nd4j::ops::LegacyReduceSameOp op(reduce::Sum);
|
|
auto axis = NDArrayFactory::create<Nd4jLong>('c', {1}, {1});
|
|
auto result = op.execute({&x, &axis}, {}, {});
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
auto z = result->at(0);
|
|
|
|
auto exp = x.reduceAlongDimension(reduce::Sum, {1});
|
|
|
|
ASSERT_TRUE(exp->isSameShape(z));
|
|
ASSERT_TRUE(exp->equalsTo(z));
|
|
|
|
delete result;
|
|
delete exp;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_3) {
|
|
auto x = NDArrayFactory::create<float>('c', {3, 5});
|
|
x.linspace(1);
|
|
auto indices = NDArrayFactory::create<int>('c', {1,1}, {1});
|
|
|
|
|
|
nd4j::ops::LegacyReduceSameOp op(reduce::Sum);
|
|
auto result = op.execute({&x, &indices}, {}, {});
|
|
auto z = result->at(0);
|
|
auto exp = x.reduceAlongDims(reduce::Sum,{1});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
delete result;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_4) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3, 5});
|
|
x.linspace(1);
|
|
auto indices = NDArrayFactory::create<int>('c', {1, 1}, {1});
|
|
|
|
|
|
nd4j::ops::LegacyReduceSameOp op(reduce::Sum);
|
|
auto result = op.execute({&x, &indices}, {}, {}, {true});
|
|
auto z = result->at(0);
|
|
auto exp = x.reduceAlongDims(reduce::Sum, {1}, true);
|
|
// indices.printShapeInfo("Indices shape");
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
// z->printIndexedBuffer("Output reduce 4");
|
|
// exp.printIndexedBuffer("Expected reduce 4");
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
delete result;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_5) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(1.0);
|
|
int opNum = reduce::Mean;
|
|
nd4j::ops::LegacyReduceFloatOp op(opNum);
|
|
|
|
ResultSet* result = op.execute({&x}, {}, {}, {}, false, nd4j::DataType::FLOAT32);
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
auto z = result->at(0);
|
|
// z->printBuffer("ReduceTest1");
|
|
ASSERT_TRUE(z->isScalar());
|
|
ASSERT_NEAR(x.meanNumber().e<float>(0), z->e<float>(0), 1e-5f);
|
|
|
|
delete result;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_6) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(1.0);
|
|
auto axis = NDArrayFactory::create<int>('c', {1}, {1});
|
|
nd4j::ops::LegacyReduceFloatOp op(reduce::Mean);
|
|
|
|
auto result = op.execute({&x, &axis}, {}, {});
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
auto z = result->at(0);
|
|
|
|
auto exp = x.reduceAlongDimension(reduce::Mean, {1});
|
|
|
|
ASSERT_TRUE(exp->isSameShape(z));
|
|
ASSERT_TRUE(exp->equalsTo(z));
|
|
|
|
delete result;
|
|
delete exp;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_7) {
|
|
auto x = NDArrayFactory::create<float>('c', {3, 5});
|
|
x.linspace(1);
|
|
auto indices = NDArrayFactory::create<int>('c', {1,1}, {1});
|
|
|
|
|
|
nd4j::ops::LegacyReduceFloatOp op(reduce::Mean);
|
|
auto result = op.execute({&x, &indices}, {}, {});
|
|
auto z = result->at(0);
|
|
auto exp = x.reduceAlongDims(reduce::Mean,{1});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
delete result;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, ReduceTests_8) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 3, 5});
|
|
x.linspace(1);
|
|
auto indices = NDArrayFactory::create<int>('c', {1}, {1});
|
|
|
|
|
|
nd4j::ops::LegacyReduceFloatOp op(reduce::Mean);
|
|
auto result = op.execute({&x, &indices}, {}, {}, {true});
|
|
auto z = result->at(0);
|
|
auto exp = x.reduceAlongDims(reduce::Mean, {1}, true);
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, result->status());
|
|
// z->printIndexedBuffer("Reduce8 output");
|
|
// z->printShapeInfo("Reduce8 shape");
|
|
// exp.printShapeInfo("Reduce8 expected shape");
|
|
ASSERT_TRUE(exp.isSameShape(z));
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
|
|
delete result;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, IndexReduceTests_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.linspace(1);
|
|
|
|
nd4j::ops::LegacyIndexReduceOp op(indexreduce::IndexMax);
|
|
|
|
auto result = op.execute({&x}, {}, {});
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
auto z = result->at(0);
|
|
|
|
ASSERT_TRUE(z->isScalar());
|
|
ASSERT_EQ(24, z->e<int>(0));
|
|
|
|
delete result;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, IndexReduceTests_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
auto indices = NDArrayFactory::create<int>('c', {1}, {1});
|
|
x.linspace(1);
|
|
auto exp = NDArrayFactory::create<Nd4jLong>({4,4,4,4,4});
|
|
nd4j::ops::LegacyIndexReduceOp op(indexreduce::IndexMax);
|
|
|
|
auto result = op.execute({&x, &indices}, {}, {});
|
|
|
|
ASSERT_EQ(1, result->size());
|
|
|
|
auto z = result->at(0);
|
|
// z->printIndexedBuffer("Hello indexreduce2");
|
|
ASSERT_TRUE(exp.equalsTo(z));
|
|
//ASSERT_EQ(4, z->e<int>(0));
|
|
//ASSERT_EQ(4, z->e<int>(1));
|
|
//ASSERT_EQ(4, z->e<int>(2));
|
|
//ASSERT_EQ(4, z->e<int>(3));
|
|
//ASSERT_EQ(4, z->e<int>(4));
|
|
|
|
delete result;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Test_IsMax_1) {
|
|
if (!Environment::getInstance()->isCPU())
|
|
return;
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 2, 2, 2, 2});
|
|
auto z = NDArrayFactory::create<double>('c', {2, 2, 2, 2, 2, 2});
|
|
x.linspace(1.0);
|
|
z.assign(-589);
|
|
|
|
double extra[] = {1.0, 0.0};
|
|
|
|
NativeOpExecutioner::execTransformAny(nullptr, transform::IsMax, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), extra, nullptr, nullptr);
|
|
|
|
// z.printIndexedBuffer("z");
|
|
for (Nd4jLong e = 0; e < z.lengthOf(); e++) {
|
|
ASSERT_TRUE(z.e<double>(e) >= 0);
|
|
}
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Test_IsMax_2) {
|
|
if (!Environment::getInstance()->isCPU())
|
|
return;
|
|
|
|
auto x = NDArrayFactory::create<double>('c', {2, 2, 2, 2, 2, 2});
|
|
auto z = NDArrayFactory::create<bool>('c', {2, 2, 2, 2, 2, 2});
|
|
x.linspace(1.0);
|
|
z.assign(false);
|
|
|
|
double extra[] = {1.0, 0.0};
|
|
|
|
NativeOpExecutioner::execTransformAny(nullptr, transform::IsMax, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), extra, nullptr, nullptr);
|
|
|
|
// z.printIndexedBuffer("z");
|
|
for (Nd4jLong e = 0; e < z.lengthOf(); e++) {
|
|
if (e >= z.lengthOf() / 2)
|
|
ASSERT_TRUE(z.e<bool>(e));
|
|
else
|
|
ASSERT_FALSE(z.e<bool>(e));
|
|
}
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, BroadcastingTests_1) {
|
|
auto x = NDArrayFactory::create<double>('c', {5, 5});
|
|
x.assign(0.0f);
|
|
|
|
auto row = NDArrayFactory::create<double>('c', {1, 5});
|
|
row.linspace(1);
|
|
auto axis = NDArrayFactory::create<int>('c', {1}, {1});
|
|
nd4j::ops::LegacyBroadcastOp op(broadcast::Add);
|
|
Nd4jStatus status = op.execute({&x, &row, &axis}, {&x}, {}, {}, {});
|
|
|
|
ASSERT_EQ(ND4J_STATUS_OK, status);
|
|
|
|
auto list = x.allTensorsAlongDimension({1});
|
|
// x.printIndexedBuffer("Output broadcast");
|
|
// list->at(0)->printIndexedBuffer("Column 0:");
|
|
for (int e = 0; e < list->size(); e++)
|
|
ASSERT_TRUE(row.equalsTo(list->at(e)));
|
|
|
|
delete list;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, BroadcastingTests_2) {
|
|
auto x = NDArrayFactory::create<double>('c', {5}, {1, 1, 1, 1, 1});
|
|
auto y = NDArrayFactory::create<double>('c', {10, 5});
|
|
auto e = NDArrayFactory::create<double>('c', {10, 5});
|
|
y.assign(3.0);
|
|
e.assign(4.0);
|
|
|
|
int axis = 1;
|
|
|
|
// shape::printShapeInfoLinear("tad shape", tad.tadOnlyShapeInfo);
|
|
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), {axis});
|
|
|
|
NDArray::prepareSpecialUse({&y}, {&x});
|
|
|
|
NativeOpExecutioner::execInverseBroadcast(LaunchContext::defaultContext(), broadcast::Add, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), &axis, 1, packY.platformShapeInfo(), packY.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
|
|
|
|
NDArray::registerSpecialUse({&y}, {&x});
|
|
|
|
ASSERT_EQ(e, y);
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, PowDerivative_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
auto exp = NDArrayFactory::create<float>('c', {5, 5});
|
|
x.assign(3.f);
|
|
exp.assign(6.f);
|
|
|
|
float p = 2.0f;
|
|
|
|
x.applyScalar(scalar::PowDerivative, p);
|
|
|
|
ASSERT_TRUE(exp.equalsTo(&x));
|
|
}
|
|
|
|
#ifndef __CUDABLAS__
|
|
TEST_F(LegacyOpsTests, reduce3_1) {
|
|
|
|
Nd4jLong yShape[2] = {4,4};
|
|
Nd4jLong xShape[1] = {4};
|
|
float y[16] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
|
|
float x[4] = {1,2,3,4};
|
|
int dimension[1] = {1};
|
|
int dimensionLength = 1;
|
|
int opNum = 1;
|
|
float extraVals[1] = {0};
|
|
float result[4] = {0.0,0.0,0.0,0.0};
|
|
|
|
std::vector<int> dim = {1};
|
|
|
|
auto shapeBuffer = nd4j::ShapeBuilders::createShapeInfo(nd4j::DataType::FLOAT32, 'c', 2, yShape);
|
|
auto xShapeBuffer = nd4j::ShapeBuilders::createShapeInfo(nd4j::DataType::FLOAT32, 'c', 1, xShape);
|
|
|
|
//int *tadShapeBuffer = shape::computeResultShape(shapeBuffer,dimension,dimensionLength);
|
|
auto tadShapeBuffer = nd4j::ShapeUtils::evalReduceShapeInfo('c', dim, shapeBuffer, false, true, nullptr);
|
|
functions::reduce3::Reduce3<float, float>::exec(opNum, x, xShapeBuffer, extraVals, y, shapeBuffer, result, tadShapeBuffer, dimension, dimensionLength);
|
|
|
|
float distancesAssertion[4] = {0.0,8.0,16.0,24.0};
|
|
for(int i = 0; i < 4; i++)
|
|
ASSERT_EQ(distancesAssertion[i],result[i]);
|
|
|
|
delete[] shapeBuffer;
|
|
delete[] xShapeBuffer;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
TEST_F(LegacyOpsTests, Reduce3_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {5, 5});
|
|
auto y = NDArrayFactory::create<float>('c', {5});
|
|
auto z = NDArrayFactory::create<float>('c', {5});
|
|
|
|
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
|
|
dim.syncToHost();
|
|
|
|
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
|
|
|
|
Nd4jPointer* extraPointers = nullptr;
|
|
#ifdef __CUDABLAS__
|
|
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
|
|
#endif
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
|
|
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
|
|
|
|
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
|
|
|
|
execReduce3Tad(extraPointers, reduce3::CosineSimilarity,
|
|
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
nullptr, y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
|
|
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
|
|
|
|
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
|
|
|
|
delete []extraPointers;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Reduce3_3) {
|
|
auto x = NDArrayFactory::create<double>('c', {3, 5}, {-0.84443557262, -0.06822254508, 0.74266910552, 0.61765557527, -0.77555125951,
|
|
-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673,
|
|
0.62955373525, -0.31357592344, 1.03362500667, -0.59279078245, 1.1914824247});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {5}, {-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673});
|
|
auto e = NDArrayFactory::create<double>('c', {3}, {0.577452, 0.0, 1.80182});
|
|
auto z = NDArrayFactory::create<double>('c', {3});
|
|
|
|
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
|
|
dim.syncToHost();
|
|
|
|
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
|
|
|
|
Nd4jPointer* extraPointers = nullptr;
|
|
#ifdef __CUDABLAS__
|
|
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
|
|
#endif
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
|
|
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
|
|
|
|
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
|
|
|
|
|
|
execReduce3Tad(extraPointers, reduce3::CosineDistance,
|
|
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
nullptr,
|
|
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
|
|
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
|
|
ASSERT_EQ(e, z);
|
|
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
|
|
delete []extraPointers;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Reduce3_4) {
|
|
auto x = NDArrayFactory::create<double>('c', {3, 5}, {-0.84443557262, -0.06822254508, 0.74266910552, 0.61765557527, -0.77555125951,
|
|
-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673,
|
|
0.62955373525, -0.31357592344, 1.03362500667, -0.59279078245, 1.1914824247});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {1, 5}, {-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673});
|
|
auto e = NDArrayFactory::create<double>('c', {1, 3}, {0.577452, 0.0, 1.80182});
|
|
auto z = NDArrayFactory::create<double>('c', {1, 3});
|
|
|
|
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
|
|
dim.syncToHost();
|
|
|
|
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
|
|
|
|
Nd4jPointer* extraPointers = nullptr;
|
|
#ifdef __CUDABLAS__
|
|
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
|
|
#endif
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
|
|
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
|
|
|
|
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
|
|
|
|
|
|
execReduce3Tad(extraPointers, reduce3::CosineDistance,
|
|
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
nullptr,
|
|
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
|
|
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
|
|
|
|
// z.printIndexedBuffer("z");
|
|
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
|
|
ASSERT_EQ(e, z);
|
|
delete []extraPointers;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, Reduce3_5) {
|
|
auto x = NDArrayFactory::create<double>('c', {3, 5}, {-0.84443557262, -0.06822254508, 0.74266910552, 0.61765557527, -0.77555125951,
|
|
-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673,
|
|
0.62955373525, -0.31357592344, 1.03362500667, -0.59279078245, 1.1914824247});
|
|
|
|
auto y = NDArrayFactory::create<double>('c', {1, 5}, {-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673});
|
|
auto e = NDArrayFactory::create<double>('c', {1, 3}, {0.577452, 0.0, 1.80182});
|
|
auto z = NDArrayFactory::create<double>('c', {1, 3});
|
|
|
|
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
|
|
dim.syncToHost();
|
|
|
|
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
|
|
|
|
Nd4jPointer* extraPointers = nullptr;
|
|
#ifdef __CUDABLAS__
|
|
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
|
|
#endif
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
|
|
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
|
|
|
|
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
|
|
|
|
|
|
execReduce3Tad(extraPointers, reduce3::CosineDistance,
|
|
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
nullptr,
|
|
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
|
|
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
|
|
|
|
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
|
|
ASSERT_EQ(e, z);
|
|
delete []extraPointers;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, test_Reduce3_All_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {1000, 100});
|
|
auto y = NDArrayFactory::create<float>('c', {1, 100});
|
|
auto z = NDArrayFactory::create<float>('c', {1000, 1});
|
|
auto dim = NDArrayFactory::create<int>('c', {1}, {-1});
|
|
|
|
auto tadPackX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.shapeInfo(), -1);
|
|
auto tadPackY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), -1);
|
|
|
|
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
|
|
|
|
Nd4jPointer* extraPointers = nullptr;
|
|
#ifdef __CUDABLAS__
|
|
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
|
|
#endif
|
|
|
|
NDArray::prepareSpecialUse({&z}, {&x, &y});
|
|
|
|
execReduce3All(extraPointers, reduce3::EuclideanDistance, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
nullptr, y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
|
|
tadPackX.platformShapeInfo(), tadPackX.platformOffsets(),
|
|
tadPackY.platformShapeInfo(), tadPackY.platformOffsets());
|
|
|
|
NDArray::registerSpecialUse({&z}, {&x, &y});
|
|
|
|
delete []extraPointers;
|
|
}
|
|
|
|
|
|
TEST_F(LegacyOpsTests, test_inverse_broadcast_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {4}, {2.0f, 2.0f, 2.0f, 2.0f});
|
|
auto y = NDArrayFactory::create<float>('c', {3, 4});
|
|
auto e = NDArrayFactory::create<float>('c', {3, 4});
|
|
e.assign(2.0f);
|
|
|
|
auto tadPackY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), 1);
|
|
|
|
y.tickWriteDevice();
|
|
|
|
NativeOpExecutioner::execInverseBroadcast(LaunchContext::defaultContext(), broadcast::Add,
|
|
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
nullptr, 0,
|
|
tadPackY.platformShapeInfo(), tadPackY.platformOffsets(),
|
|
tadPackY.platformShapeInfo(), tadPackY.platformOffsets());
|
|
|
|
ASSERT_EQ(e, y);
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, test_inverse_broadcast_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {4}, {2.0f, 2.0f, 2.0f, 2.0f});
|
|
auto y = NDArrayFactory::create<float>('c', {3, 4});
|
|
auto z = NDArrayFactory::create<bool>('c', {3, 4});
|
|
auto e = NDArrayFactory::create<bool>('c', {3, 4});
|
|
e.assign(false);
|
|
|
|
auto row = y.tensorAlongDimension(1, {1});
|
|
row->assign(2.0f);
|
|
|
|
auto erow = e.tensorAlongDimension(1, {1});
|
|
erow->assign(true);
|
|
|
|
auto tadPackY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), 1);
|
|
|
|
z.tickWriteDevice();
|
|
|
|
NativeOpExecutioner::execInverseBroadcastBool(LaunchContext::defaultContext(), broadcast::BoolOps::EqualTo,
|
|
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
nullptr, 0,
|
|
tadPackY.platformShapeInfo(), tadPackY.platformOffsets(),
|
|
tadPackY.platformShapeInfo(), tadPackY.platformOffsets());
|
|
|
|
ASSERT_EQ(e, z);
|
|
|
|
delete row;
|
|
delete erow;
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, test_legacy_reduce_empty_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 0, 3});
|
|
auto z = NDArrayFactory::create<float>('c', {2, 3});
|
|
auto e = NDArrayFactory::create<float>('c', {2, 3});
|
|
|
|
int dim = 1;
|
|
|
|
NativeOpExecutioner::execReduceSame(LaunchContext::defaultContext(), reduce::SameOps::Sum,
|
|
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
|
|
nullptr,
|
|
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
|
|
&dim, 1, x.getPlatformShapeInfo(), nullptr);
|
|
|
|
ASSERT_EQ(e, z);
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, test_legacy_reduce_empty_2) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 0, 3});
|
|
auto z = NDArrayFactory::create<float>('c', {2, 3});
|
|
auto e = NDArrayFactory::create<float>('c', {2, 3});
|
|
e.assign(std::numeric_limits<float>::infinity());
|
|
|
|
int dim = 1;
|
|
|
|
NativeOpExecutioner::execReduceSame(LaunchContext::defaultContext(), reduce::SameOps::Min, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), &dim, 1, x.getPlatformShapeInfo(), nullptr);
|
|
|
|
ASSERT_EQ(e, z);
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, test_legacy_reduce_empty_3) {
|
|
auto x = NDArrayFactory::create<float>('c', {2, 0, 3});
|
|
auto z = NDArrayFactory::create<float>('c', {2, 3});
|
|
auto e = NDArrayFactory::create<float>('c', {2, 3});
|
|
e.assign(-std::numeric_limits<float>::infinity());
|
|
|
|
int dim = 1;
|
|
|
|
NativeOpExecutioner::execReduceSame(LaunchContext::defaultContext(), reduce::SameOps::Max, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), &dim, 1, x.getPlatformShapeInfo(), nullptr);
|
|
|
|
ASSERT_EQ(e, z);
|
|
}
|
|
|
|
TEST_F(LegacyOpsTests, test_legacy_transform_float_1) {
|
|
auto x = NDArrayFactory::create<float>('c', {1, 0, 4});
|
|
|
|
NativeOpExecutioner::execTransformFloat(LaunchContext::defaultContext(), transform::FloatOps::RSqrt, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, nullptr, nullptr);
|
|
}
|