cavis/libnd4j/tests_cpu/layers_tests/LegacyOpsTests.cpp
raver119 53ca9a76e8
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* launch context reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* per-device LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Fix functions of OpaqueVariablesSet

* thread-local buffers/affinity

Signed-off-by: raver119 <raver119@gmail.com>

* thread safety for LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* more of thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* one more multi threaded test

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* round robin affinity test

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy CudaContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy ContextPool classes/methods

Signed-off-by: raver119 <raver119@gmail.com>

* one legacy test removed

Signed-off-by: raver119 <raver119@gmail.com>

* few more fields rearranged

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext++

Signed-off-by: raver119 <raver119@gmail.com>

* more of OpaqueLaunchContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext -> CudaContext

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handles

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver method

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handle propagated

Signed-off-by: raver119 <raver119@gmail.com>

* blas/solver handles

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* legacy concat implementations replaced with new CustomOp

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* concat now uses way more blocks

Signed-off-by: raver119 <raver119@gmail.com>

* print

Signed-off-by: raver119 <raver119@gmail.com>

* no more triple template mmul

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bitonic sort reorganized

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* type conversions moved to generic impl

Signed-off-by: raver119 <raver119@gmail.com>

* cpu data types pass

Signed-off-by: raver119 <raver119@gmail.com>

* non_max_suppression

Signed-off-by: raver119 <raver119@gmail.com>

* sortByValue fix

Signed-off-by: raver119 <raver119@gmail.com>

* ignore all mixed datatype tests for mmul

Signed-off-by: raver119 <raver119@gmail.com>

* special handling of OpProfiler exceptions

Signed-off-by: raver119 <raver119@gmail.com>

* - one failing concat test in cpp
- Nd4j.tile now uses op internally

Signed-off-by: raver119 <raver119@gmail.com>

* get back dtype exception for legacy arrays deserialization

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 16:52:34 +03:00

777 lines
28 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver119 on 16.10.2017.
//
#include "testlayers.h"
#include <NDArray.h>
#include <ShapeUtils.h>
#include <reduce3.h>
#include <ops/declarable/LegacyTransformOp.h>
#include <ops/declarable/LegacyPairwiseTransformOp.h>
#include <ops/declarable/LegacyScalarOp.h>
#include <ops/declarable/LegacyReduceSameOp.h>
#include <ops/declarable/LegacyReduceFloatOp.h>
#include <ops/declarable/LegacyIndexReduceOp.h>
#include <ops/declarable/LegacyBroadcastOp.h>
#include <helpers/TAD.h>
#include <helpers/ConstantTadHelper.h>
using namespace nd4j;
using namespace nd4j::ops;
class LegacyOpsTests : public testing::Test {
};
TEST_F(LegacyOpsTests, TransformTests_1) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(1.0);
auto z = NDArrayFactory::create<float>('c', {5,5});
auto exp = NDArrayFactory::create<float>('c', {5, 5});
exp.assign(-1.0);
nd4j::ops::LegacyTransformSameOp op(transform::Neg); // Neg
auto status = op.execute({&x}, {&z}, {}, {}, {});
ASSERT_EQ(status, ND4J_STATUS_OK);
//z.printIndexedBuffer("Output NEG");
ASSERT_TRUE(z.equalsTo(&exp));
}
TEST_F(LegacyOpsTests, TransformTests_2) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(1.0);
auto exp = NDArrayFactory::create<float>('c', {5, 5});
exp.assign(-1.0);
nd4j::ops::LegacyTransformSameOp op(transform::Neg); // Neg
auto result = op.execute({&x}, {}, {});
ASSERT_EQ(1, result->size());
auto z = result->at(0);
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(LegacyOpsTests, Reciprocal_1) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(2.0f);
auto ethalon = NDArrayFactory::create<float>('c', {5, 5});
ethalon.assign(0.5f);
nd4j::ops::LegacyTransformSameOp op(transform::Reciprocal); // Reciprocal
Nd4jStatus status = op.execute({&x}, {&x}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(ethalon.equalsTo(&x));
}
TEST_F(LegacyOpsTests, PWT_Tests_1) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(2.0);
auto y = NDArrayFactory::create<float>('c', {5, 5});
y.assign(3.0);
auto exp = NDArrayFactory::create<float>('c', {5, 5});
exp.assign(6.0);
nd4j::ops::LegacyPairwiseTransformOp op(pairwise::Multiply); // Multiply
Nd4jStatus status = op.execute({&x, &y}, {&x}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
ASSERT_TRUE(exp.equalsTo(&x));
}
TEST_F(LegacyOpsTests, PWT_Tests_2) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(2.0);
auto y = NDArrayFactory::create<float>('c', {5, 5});
y.assign(3.0);
auto exp = NDArrayFactory::create<float>('c', {5, 5});
exp.assign(6.0);
nd4j::ops::LegacyPairwiseTransformOp op(pairwise::Multiply); // Multiply
auto result = op.execute({&x, &y}, {}, {});
auto z = result->at(0);
//z->printBuffer("Z");
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(LegacyOpsTests, Scalar_Test_1) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(2.0);
auto exp = NDArrayFactory::create<float>('c', {5, 5});
exp.assign(7.0);
nd4j::ops::LegacyScalarOp op(scalar::Add);
op.execute({&x}, {&x}, {5.0}, {}, {}); //
ASSERT_TRUE(exp.equalsTo(&x));
}
TEST_F(LegacyOpsTests, Scalar_Test_2) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(2.0);
auto exp = NDArrayFactory::create<float>('c', {5, 5});
exp.assign(7.0);
auto y = NDArrayFactory::create<float>(5.0f);
nd4j::ops::LegacyScalarOp op(scalar::Add, y);
auto result = op.execute({&x}, {}, {});
auto z = result->at(0);
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(LegacyOpsTests, ReduceTests_1) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(1.0);
int opNum = reduce::Sum;
nd4j::ops::LegacyReduceSameOp op(opNum);
auto result = op.execute({&x}, {}, {});
ASSERT_EQ(1, result->size());
auto z = result->at(0);
// z->printBuffer("ReduceTest1");
ASSERT_TRUE(z->isScalar());
ASSERT_NEAR(x.sumNumber().e<float>(0), z->e<float>(0), 1e-5f);
delete result;
}
TEST_F(LegacyOpsTests, ReduceTests_2) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(1.0);
nd4j::ops::LegacyReduceSameOp op(reduce::Sum);
auto axis = NDArrayFactory::create<Nd4jLong>('c', {1}, {1});
auto result = op.execute({&x, &axis}, {}, {});
ASSERT_EQ(1, result->size());
auto z = result->at(0);
auto exp = x.reduceAlongDimension(reduce::Sum, {1});
ASSERT_TRUE(exp->isSameShape(z));
ASSERT_TRUE(exp->equalsTo(z));
delete result;
delete exp;
}
TEST_F(LegacyOpsTests, ReduceTests_3) {
auto x = NDArrayFactory::create<float>('c', {3, 5});
x.linspace(1);
auto indices = NDArrayFactory::create<int>('c', {1,1}, {1});
nd4j::ops::LegacyReduceSameOp op(reduce::Sum);
auto result = op.execute({&x, &indices}, {}, {});
auto z = result->at(0);
auto exp = x.reduceAlongDims(reduce::Sum,{1});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(LegacyOpsTests, ReduceTests_4) {
auto x = NDArrayFactory::create<float>('c', {2, 3, 5});
x.linspace(1);
auto indices = NDArrayFactory::create<int>('c', {1, 1}, {1});
nd4j::ops::LegacyReduceSameOp op(reduce::Sum);
auto result = op.execute({&x, &indices}, {}, {}, {true});
auto z = result->at(0);
auto exp = x.reduceAlongDims(reduce::Sum, {1}, true);
// indices.printShapeInfo("Indices shape");
ASSERT_EQ(ND4J_STATUS_OK, result->status());
// z->printIndexedBuffer("Output reduce 4");
// exp.printIndexedBuffer("Expected reduce 4");
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(LegacyOpsTests, ReduceTests_5) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(1.0);
int opNum = reduce::Mean;
nd4j::ops::LegacyReduceFloatOp op(opNum);
ResultSet* result = op.execute({&x}, {}, {}, {}, false, nd4j::DataType::FLOAT32);
ASSERT_EQ(1, result->size());
auto z = result->at(0);
// z->printBuffer("ReduceTest1");
ASSERT_TRUE(z->isScalar());
ASSERT_NEAR(x.meanNumber().e<float>(0), z->e<float>(0), 1e-5f);
delete result;
}
TEST_F(LegacyOpsTests, ReduceTests_6) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.assign(1.0);
auto axis = NDArrayFactory::create<int>('c', {1}, {1});
nd4j::ops::LegacyReduceFloatOp op(reduce::Mean);
auto result = op.execute({&x, &axis}, {}, {});
ASSERT_EQ(1, result->size());
auto z = result->at(0);
auto exp = x.reduceAlongDimension(reduce::Mean, {1});
ASSERT_TRUE(exp->isSameShape(z));
ASSERT_TRUE(exp->equalsTo(z));
delete result;
delete exp;
}
TEST_F(LegacyOpsTests, ReduceTests_7) {
auto x = NDArrayFactory::create<float>('c', {3, 5});
x.linspace(1);
auto indices = NDArrayFactory::create<int>('c', {1,1}, {1});
nd4j::ops::LegacyReduceFloatOp op(reduce::Mean);
auto result = op.execute({&x, &indices}, {}, {});
auto z = result->at(0);
auto exp = x.reduceAlongDims(reduce::Mean,{1});
ASSERT_EQ(ND4J_STATUS_OK, result->status());
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(LegacyOpsTests, ReduceTests_8) {
auto x = NDArrayFactory::create<float>('c', {2, 3, 5});
x.linspace(1);
auto indices = NDArrayFactory::create<int>('c', {1}, {1});
nd4j::ops::LegacyReduceFloatOp op(reduce::Mean);
auto result = op.execute({&x, &indices}, {}, {}, {true});
auto z = result->at(0);
auto exp = x.reduceAlongDims(reduce::Mean, {1}, true);
ASSERT_EQ(ND4J_STATUS_OK, result->status());
// z->printIndexedBuffer("Reduce8 output");
// z->printShapeInfo("Reduce8 shape");
// exp.printShapeInfo("Reduce8 expected shape");
ASSERT_TRUE(exp.isSameShape(z));
ASSERT_TRUE(exp.equalsTo(z));
delete result;
}
TEST_F(LegacyOpsTests, IndexReduceTests_1) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
x.linspace(1);
nd4j::ops::LegacyIndexReduceOp op(indexreduce::IndexMax);
auto result = op.execute({&x}, {}, {});
ASSERT_EQ(1, result->size());
auto z = result->at(0);
ASSERT_TRUE(z->isScalar());
ASSERT_EQ(24, z->e<int>(0));
delete result;
}
TEST_F(LegacyOpsTests, IndexReduceTests_2) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
auto indices = NDArrayFactory::create<int>('c', {1}, {1});
x.linspace(1);
auto exp = NDArrayFactory::create<Nd4jLong>({4,4,4,4,4});
nd4j::ops::LegacyIndexReduceOp op(indexreduce::IndexMax);
auto result = op.execute({&x, &indices}, {}, {});
ASSERT_EQ(1, result->size());
auto z = result->at(0);
// z->printIndexedBuffer("Hello indexreduce2");
ASSERT_TRUE(exp.equalsTo(z));
//ASSERT_EQ(4, z->e<int>(0));
//ASSERT_EQ(4, z->e<int>(1));
//ASSERT_EQ(4, z->e<int>(2));
//ASSERT_EQ(4, z->e<int>(3));
//ASSERT_EQ(4, z->e<int>(4));
delete result;
}
TEST_F(LegacyOpsTests, Test_IsMax_1) {
if (!Environment::getInstance()->isCPU())
return;
auto x = NDArrayFactory::create<double>('c', {2, 2, 2, 2, 2, 2});
auto z = NDArrayFactory::create<double>('c', {2, 2, 2, 2, 2, 2});
x.linspace(1.0);
z.assign(-589);
double extra[] = {1.0, 0.0};
NativeOpExecutioner::execTransformAny(nullptr, transform::IsMax, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), extra, nullptr, nullptr);
// z.printIndexedBuffer("z");
for (Nd4jLong e = 0; e < z.lengthOf(); e++) {
ASSERT_TRUE(z.e<double>(e) >= 0);
}
}
TEST_F(LegacyOpsTests, Test_IsMax_2) {
if (!Environment::getInstance()->isCPU())
return;
auto x = NDArrayFactory::create<double>('c', {2, 2, 2, 2, 2, 2});
auto z = NDArrayFactory::create<bool>('c', {2, 2, 2, 2, 2, 2});
x.linspace(1.0);
z.assign(false);
double extra[] = {1.0, 0.0};
NativeOpExecutioner::execTransformAny(nullptr, transform::IsMax, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), extra, nullptr, nullptr);
// z.printIndexedBuffer("z");
for (Nd4jLong e = 0; e < z.lengthOf(); e++) {
if (e >= z.lengthOf() / 2)
ASSERT_TRUE(z.e<bool>(e));
else
ASSERT_FALSE(z.e<bool>(e));
}
}
TEST_F(LegacyOpsTests, BroadcastingTests_1) {
auto x = NDArrayFactory::create<double>('c', {5, 5});
x.assign(0.0f);
auto row = NDArrayFactory::create<double>('c', {1, 5});
row.linspace(1);
auto axis = NDArrayFactory::create<int>('c', {1}, {1});
nd4j::ops::LegacyBroadcastOp op(broadcast::Add);
Nd4jStatus status = op.execute({&x, &row, &axis}, {&x}, {}, {}, {});
ASSERT_EQ(ND4J_STATUS_OK, status);
auto list = x.allTensorsAlongDimension({1});
// x.printIndexedBuffer("Output broadcast");
// list->at(0)->printIndexedBuffer("Column 0:");
for (int e = 0; e < list->size(); e++)
ASSERT_TRUE(row.equalsTo(list->at(e)));
delete list;
}
TEST_F(LegacyOpsTests, BroadcastingTests_2) {
auto x = NDArrayFactory::create<double>('c', {5}, {1, 1, 1, 1, 1});
auto y = NDArrayFactory::create<double>('c', {10, 5});
auto e = NDArrayFactory::create<double>('c', {10, 5});
y.assign(3.0);
e.assign(4.0);
int axis = 1;
// shape::printShapeInfoLinear("tad shape", tad.tadOnlyShapeInfo);
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), {axis});
NDArray::prepareSpecialUse({&y}, {&x});
NativeOpExecutioner::execInverseBroadcast(LaunchContext::defaultContext(), broadcast::Add, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(), &axis, 1, packY.platformShapeInfo(), packY.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
NDArray::registerSpecialUse({&y}, {&x});
ASSERT_EQ(e, y);
}
TEST_F(LegacyOpsTests, PowDerivative_1) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
auto exp = NDArrayFactory::create<float>('c', {5, 5});
x.assign(3.f);
exp.assign(6.f);
float p = 2.0f;
x.applyScalar(scalar::PowDerivative, p);
ASSERT_TRUE(exp.equalsTo(&x));
}
#ifndef __CUDABLAS__
TEST_F(LegacyOpsTests, reduce3_1) {
Nd4jLong yShape[2] = {4,4};
Nd4jLong xShape[1] = {4};
float y[16] ={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
float x[4] = {1,2,3,4};
int dimension[1] = {1};
int dimensionLength = 1;
int opNum = 1;
float extraVals[1] = {0};
float result[4] = {0.0,0.0,0.0,0.0};
std::vector<int> dim = {1};
auto shapeBuffer = nd4j::ShapeBuilders::createShapeInfo(nd4j::DataType::FLOAT32, 'c', 2, yShape);
auto xShapeBuffer = nd4j::ShapeBuilders::createShapeInfo(nd4j::DataType::FLOAT32, 'c', 1, xShape);
//int *tadShapeBuffer = shape::computeResultShape(shapeBuffer,dimension,dimensionLength);
auto tadShapeBuffer = nd4j::ShapeUtils::evalReduceShapeInfo('c', dim, shapeBuffer, false, true, nullptr);
functions::reduce3::Reduce3<float, float>::exec(opNum, x, xShapeBuffer, extraVals, y, shapeBuffer, result, tadShapeBuffer, dimension, dimensionLength);
float distancesAssertion[4] = {0.0,8.0,16.0,24.0};
for(int i = 0; i < 4; i++)
ASSERT_EQ(distancesAssertion[i],result[i]);
delete[] shapeBuffer;
delete[] xShapeBuffer;
}
#endif
TEST_F(LegacyOpsTests, Reduce3_2) {
auto x = NDArrayFactory::create<float>('c', {5, 5});
auto y = NDArrayFactory::create<float>('c', {5});
auto z = NDArrayFactory::create<float>('c', {5});
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
dim.syncToHost();
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
Nd4jPointer* extraPointers = nullptr;
#ifdef __CUDABLAS__
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
#endif
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
execReduce3Tad(extraPointers, reduce3::CosineSimilarity,
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
nullptr, y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
delete []extraPointers;
}
TEST_F(LegacyOpsTests, Reduce3_3) {
auto x = NDArrayFactory::create<double>('c', {3, 5}, {-0.84443557262, -0.06822254508, 0.74266910552, 0.61765557527, -0.77555125951,
-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673,
0.62955373525, -0.31357592344, 1.03362500667, -0.59279078245, 1.1914824247});
auto y = NDArrayFactory::create<double>('c', {5}, {-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673});
auto e = NDArrayFactory::create<double>('c', {3}, {0.577452, 0.0, 1.80182});
auto z = NDArrayFactory::create<double>('c', {3});
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
dim.syncToHost();
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
Nd4jPointer* extraPointers = nullptr;
#ifdef __CUDABLAS__
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
#endif
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
execReduce3Tad(extraPointers, reduce3::CosineDistance,
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
nullptr,
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
ASSERT_EQ(e, z);
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
delete []extraPointers;
}
TEST_F(LegacyOpsTests, Reduce3_4) {
auto x = NDArrayFactory::create<double>('c', {3, 5}, {-0.84443557262, -0.06822254508, 0.74266910552, 0.61765557527, -0.77555125951,
-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673,
0.62955373525, -0.31357592344, 1.03362500667, -0.59279078245, 1.1914824247});
auto y = NDArrayFactory::create<double>('c', {1, 5}, {-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673});
auto e = NDArrayFactory::create<double>('c', {1, 3}, {0.577452, 0.0, 1.80182});
auto z = NDArrayFactory::create<double>('c', {1, 3});
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
dim.syncToHost();
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
Nd4jPointer* extraPointers = nullptr;
#ifdef __CUDABLAS__
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
#endif
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
execReduce3Tad(extraPointers, reduce3::CosineDistance,
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
nullptr,
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
// z.printIndexedBuffer("z");
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
ASSERT_EQ(e, z);
delete []extraPointers;
}
TEST_F(LegacyOpsTests, Reduce3_5) {
auto x = NDArrayFactory::create<double>('c', {3, 5}, {-0.84443557262, -0.06822254508, 0.74266910552, 0.61765557527, -0.77555125951,
-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673,
0.62955373525, -0.31357592344, 1.03362500667, -0.59279078245, 1.1914824247});
auto y = NDArrayFactory::create<double>('c', {1, 5}, {-0.99536740779, -0.0257304441183, -0.6512106060, -0.345789492130, -1.25485503673});
auto e = NDArrayFactory::create<double>('c', {1, 3}, {0.577452, 0.0, 1.80182});
auto z = NDArrayFactory::create<double>('c', {1, 3});
auto dim = NDArrayFactory::create<int>('c', {1}, {1});
dim.syncToHost();
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
Nd4jPointer* extraPointers = nullptr;
#ifdef __CUDABLAS__
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
#endif
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.getShapeInfo(), {1});
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.getShapeInfo(), {1});
NDArray::prepareSpecialUse({&z}, {&x, &y, &dim});
execReduce3Tad(extraPointers, reduce3::CosineDistance,
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
nullptr,
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
packX.platformShapeInfo(), packX.platformOffsets(), packY.platformShapeInfo(), packY.platformOffsets());
NDArray::registerSpecialUse({&z}, {&x, &y, &dim});
ASSERT_EQ(e, z);
delete []extraPointers;
}
TEST_F(LegacyOpsTests, test_Reduce3_All_1) {
auto x = NDArrayFactory::create<float>('c', {1000, 100});
auto y = NDArrayFactory::create<float>('c', {1, 100});
auto z = NDArrayFactory::create<float>('c', {1000, 1});
auto dim = NDArrayFactory::create<int>('c', {1}, {-1});
auto tadPackX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(x.shapeInfo(), -1);
auto tadPackY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), -1);
nd4j::LaunchContext* context = nd4j::LaunchContext::defaultContext();
Nd4jPointer* extraPointers = nullptr;
#ifdef __CUDABLAS__
extraPointers = new Nd4jPointer[7] {nullptr, context->getCudaStream(), context->getScalarPointer(), nullptr, context->getCudaSpecialStream(), context->getReductionPointer(), context->getAllocationPointer()};
#endif
NDArray::prepareSpecialUse({&z}, {&x, &y});
execReduce3All(extraPointers, reduce3::EuclideanDistance, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
nullptr, y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
dim.buffer(), dim.shapeInfo(), dim.specialBuffer(), dim.specialShapeInfo(),
tadPackX.platformShapeInfo(), tadPackX.platformOffsets(),
tadPackY.platformShapeInfo(), tadPackY.platformOffsets());
NDArray::registerSpecialUse({&z}, {&x, &y});
delete []extraPointers;
}
TEST_F(LegacyOpsTests, test_inverse_broadcast_1) {
auto x = NDArrayFactory::create<float>('c', {4}, {2.0f, 2.0f, 2.0f, 2.0f});
auto y = NDArrayFactory::create<float>('c', {3, 4});
auto e = NDArrayFactory::create<float>('c', {3, 4});
e.assign(2.0f);
auto tadPackY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), 1);
y.tickWriteDevice();
NativeOpExecutioner::execInverseBroadcast(LaunchContext::defaultContext(), broadcast::Add,
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
nullptr, 0,
tadPackY.platformShapeInfo(), tadPackY.platformOffsets(),
tadPackY.platformShapeInfo(), tadPackY.platformOffsets());
ASSERT_EQ(e, y);
}
TEST_F(LegacyOpsTests, test_inverse_broadcast_2) {
auto x = NDArrayFactory::create<float>('c', {4}, {2.0f, 2.0f, 2.0f, 2.0f});
auto y = NDArrayFactory::create<float>('c', {3, 4});
auto z = NDArrayFactory::create<bool>('c', {3, 4});
auto e = NDArrayFactory::create<bool>('c', {3, 4});
e.assign(false);
auto row = y.tensorAlongDimension(1, {1});
row->assign(2.0f);
auto erow = e.tensorAlongDimension(1, {1});
erow->assign(true);
auto tadPackY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(y.shapeInfo(), 1);
z.tickWriteDevice();
NativeOpExecutioner::execInverseBroadcastBool(LaunchContext::defaultContext(), broadcast::BoolOps::EqualTo,
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
y.buffer(), y.shapeInfo(), y.specialBuffer(), y.specialShapeInfo(),
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
nullptr, 0,
tadPackY.platformShapeInfo(), tadPackY.platformOffsets(),
tadPackY.platformShapeInfo(), tadPackY.platformOffsets());
ASSERT_EQ(e, z);
delete row;
delete erow;
}
TEST_F(LegacyOpsTests, test_legacy_reduce_empty_1) {
auto x = NDArrayFactory::create<float>('c', {2, 0, 3});
auto z = NDArrayFactory::create<float>('c', {2, 3});
auto e = NDArrayFactory::create<float>('c', {2, 3});
int dim = 1;
NativeOpExecutioner::execReduceSame(LaunchContext::defaultContext(), reduce::SameOps::Sum,
x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(),
nullptr,
z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(),
&dim, 1, x.getPlatformShapeInfo(), nullptr);
ASSERT_EQ(e, z);
}
TEST_F(LegacyOpsTests, test_legacy_reduce_empty_2) {
auto x = NDArrayFactory::create<float>('c', {2, 0, 3});
auto z = NDArrayFactory::create<float>('c', {2, 3});
auto e = NDArrayFactory::create<float>('c', {2, 3});
e.assign(std::numeric_limits<float>::infinity());
int dim = 1;
NativeOpExecutioner::execReduceSame(LaunchContext::defaultContext(), reduce::SameOps::Min, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), &dim, 1, x.getPlatformShapeInfo(), nullptr);
ASSERT_EQ(e, z);
}
TEST_F(LegacyOpsTests, test_legacy_reduce_empty_3) {
auto x = NDArrayFactory::create<float>('c', {2, 0, 3});
auto z = NDArrayFactory::create<float>('c', {2, 3});
auto e = NDArrayFactory::create<float>('c', {2, 3});
e.assign(-std::numeric_limits<float>::infinity());
int dim = 1;
NativeOpExecutioner::execReduceSame(LaunchContext::defaultContext(), reduce::SameOps::Max, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, z.buffer(), z.shapeInfo(), z.specialBuffer(), z.specialShapeInfo(), &dim, 1, x.getPlatformShapeInfo(), nullptr);
ASSERT_EQ(e, z);
}
TEST_F(LegacyOpsTests, test_legacy_transform_float_1) {
auto x = NDArrayFactory::create<float>('c', {1, 0, 4});
NativeOpExecutioner::execTransformFloat(LaunchContext::defaultContext(), transform::FloatOps::RSqrt, x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), x.buffer(), x.shapeInfo(), x.specialBuffer(), x.specialShapeInfo(), nullptr, nullptr, nullptr);
}