cavis/libnd4j/tests_cpu/layers_tests/CudaBasicsTests2.cu
raver119 53ca9a76e8
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* launch context reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* per-device LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Fix functions of OpaqueVariablesSet

* thread-local buffers/affinity

Signed-off-by: raver119 <raver119@gmail.com>

* thread safety for LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* more of thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* one more multi threaded test

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* round robin affinity test

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy CudaContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy ContextPool classes/methods

Signed-off-by: raver119 <raver119@gmail.com>

* one legacy test removed

Signed-off-by: raver119 <raver119@gmail.com>

* few more fields rearranged

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext++

Signed-off-by: raver119 <raver119@gmail.com>

* more of OpaqueLaunchContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext -> CudaContext

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handles

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver method

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handle propagated

Signed-off-by: raver119 <raver119@gmail.com>

* blas/solver handles

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* legacy concat implementations replaced with new CustomOp

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* concat now uses way more blocks

Signed-off-by: raver119 <raver119@gmail.com>

* print

Signed-off-by: raver119 <raver119@gmail.com>

* no more triple template mmul

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bitonic sort reorganized

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* type conversions moved to generic impl

Signed-off-by: raver119 <raver119@gmail.com>

* cpu data types pass

Signed-off-by: raver119 <raver119@gmail.com>

* non_max_suppression

Signed-off-by: raver119 <raver119@gmail.com>

* sortByValue fix

Signed-off-by: raver119 <raver119@gmail.com>

* ignore all mixed datatype tests for mmul

Signed-off-by: raver119 <raver119@gmail.com>

* special handling of OpProfiler exceptions

Signed-off-by: raver119 <raver119@gmail.com>

* - one failing concat test in cpp
- Nd4j.tile now uses op internally

Signed-off-by: raver119 <raver119@gmail.com>

* get back dtype exception for legacy arrays deserialization

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 16:52:34 +03:00

1156 lines
42 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
//
#include "testlayers.h"
#include <NDArray.h>
#include <NDArrayFactory.h>
#include <Context.h>
#include <Node.h>
#include <graph/Variable.h>
#include <graph/VariableSpace.h>
#include <specials_cuda.h>
#include <TAD.h>
#include <MmulHelper.h>
#include <cuda.h>
using namespace nd4j;
using namespace nd4j::graph;
class CudaBasicsTests2 : public testing::Test {
public:
};
TEST_F(CudaBasicsTests2, test_devices_1) {
auto caps = Environment::getInstance()->capabilities();
ASSERT_FALSE(caps.empty());
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_1) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {0.1, 0.3, 0.5, 2.5, 2.7, 2.9, 4.9, 5.1, 5.3, 7.3, 7.5, 7.7, 9.7, 9.9, 10.1}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
// c.printIndexedBuffer();
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_2) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('f', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M,N}, {-1.6, -0.7, 0.2, -0.8, 0.1, 1., -0., 0.9, 1.8, 0.8, 1.7, 2.6, 1.6, 2.5, 3.4}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_3) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('f', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M,N}, {-1.9, -0.9, 0.1, 1.3, 0.3, -0.7, -0.7, 0.3, 1.3, 0.1, -0.9, -1.9, 0.5, 1.5, 2.5}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_4) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {0.1, 2.5, 4.9, 7.3, 9.7,0.3, 2.7, 5.1, 7.5, 9.9,0.5, 2.9, 5.3, 7.7, 10.1}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
// NDArray* pA = a.permute({1,0});
// NDArray* pB = b.permute({1,0});
// NDArray* pC = c.permute({1,0});
// nd4j::MmulHelper::mmul(pB, pA, pC, 1., 0.);
// ASSERT_TRUE(c.equalsTo(&exp));
// delete pA;
// delete pB;
// delete pC;
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_5) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('f', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M,N}, {-8.8, -4.3, 0.2, 8.6, 4.1, -0.4, -8.4, -3.9, 0.6, 8.2, 3.7, -0.8, -8.0, -3.5, 1.}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_6) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {-1.6, -0.8, -0.0, 0.8, 1.6, -0.7, 0.1, 0.9, 1.7, 2.5, 0.2, 1.0, 1.8, 2.6, 3.4}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_7) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {-1.9, 1.3, -0.7, 0.1, 0.5, -0.9, 0.3, 0.3, -0.9, 1.5, 0.1, -0.7, 1.3, -1.9, 2.5}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_8) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {-8.8, 8.6, -8.4, 8.2, -8.0, -4.3, 4.1, -3.9, 3.7, -3.5, 0.2, -0.4, 0.6, -0.8, 1.}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_9) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('c', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('c', {M,N}, {-8.8, 8.6, -8.4, 8.2, -8.0, -4.3, 4.1, -3.9, 3.7, -3.5, 0.2, -0.4, 0.6, -0.8, 1.}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_10) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {0.1, 0.3, 0.5, 2.5, 2.7, 2.9, 4.9, 5.1, 5.3, 7.3, 7.5, 7.7, 9.7, 9.9, 10.1}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
// c.printIndexedBuffer();
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_11) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {-1.9, -0.9, 0.1, 1.3, 0.3, -0.7, -0.7, 0.3, 1.3, 0.1, -0.9, -1.9, 0.5, 1.5, 2.5}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_12) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5) return;
const Nd4jLong M = 4;
const Nd4jLong K = 4;
const Nd4jLong N = 4;
NDArray a('f', {M,K}, {1.,2,3,4,5,6,7,8,9,2,3,2,1,0,4,7.}, nd4j::DataType::INT8);
NDArray b('f', {K,N}, {-2,-3,0,1,5,-6,7,-8,9,-1,2,-2,3,-4,5,-6.}, nd4j::DataType::INT8);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {-16., -22., -23., -25., 30., -12., -38., -70., 20., 16., 18., 18., 22., -8., -28., -52.}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_13) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.,2,3,4,5,6,7,8,9,10,11,12}, nd4j::DataType::INT8);
NDArray b('c', {K,N}, {-2,-3,0,1,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::INT8);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {-109., -122., -135., 111., 120., 129., -121., -134., -147., 129., 144., 159., -130., -140., -150.}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_14) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.,2,3,4,5,6,7,8,9,10,11,12}, nd4j::DataType::INT8);
NDArray b('c', {K,N}, {-2,-3,0,1,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::INT8);
NDArray c('c', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('c', {M,N}, {-45., 43., -49., 53., -50., -97., 79., -101., 113., -90., -149., 115., -153., 173., -130.}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_15) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {0.1, 0.3, 0.5, 2.5, 2.7, 2.9, 4.9, 5.1, 5.3, 7.3, 7.5, 7.7, 9.7, 9.9, 10.1}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
// c.printBuffer();
ASSERT_TRUE(c.equalsTo(&exp, 0.01));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_16) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {-1.9, -0.9, 0.1, 1.3, 0.3, -0.7, -0.7, 0.3, 1.3, 0.1, -0.9, -1.9, 0.5, 1.5, 2.5}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 0.01));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_17) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('c', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('c', {M,N}, {-8.8, 8.6, -8.4, 8.2, -8.0, -4.3, 4.1, -3.9, 3.7, -3.5, 0.2, -0.4, 0.6, -0.8, 1.}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 0.01));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_18) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5.3) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('f', {M,N}, nd4j::DataType::HALF);
NDArray exp('f', {M,N}, {0.1, 0.3, 0.5, 2.5, 2.7, 2.9, 4.9, 5.1, 5.3, 7.3, 7.5, 7.7, 9.7, 9.9, 10.1}, nd4j::DataType::HALF);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 1e-1));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_19) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5.3) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('f', {M,N}, nd4j::DataType::HALF);
NDArray exp('f', {M,N}, {-1.9, -0.9, 0.1, 1.3, 0.3, -0.7, -0.7, 0.3, 1.3, 0.1, -0.9, -1.9, 0.5, 1.5, 2.5}, nd4j::DataType::HALF);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 1e-1));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_20) {
int devCnt = 0;
cudaGetDevice(&devCnt);
if(Environment::getInstance()->capabilities()[devCnt].first() < 5.3) return;
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('c', {M,N}, nd4j::DataType::HALF);
NDArray exp('c', {M,N}, {-8.8, 8.6, -8.4, 8.2, -8.0, -4.3, 4.1, -3.9, 3.7, -3.5, 0.2, -0.4, 0.6, -0.8, 1.}, nd4j::DataType::HALF);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 1e-1));
}
/*
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_21) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.,2,3,4,5,6,7,8,9,10,11,12}, nd4j::DataType::INT8);
NDArray b('c', {K,N}, {-2,-3,0,1,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {-45., 43., -49., 53., -50., -97., 79., -101., 113., -90., -149., 115., -153., 173., -130.}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_22) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.,2,3,4,5,6,7,8,9,10,11,12}, nd4j::DataType::FLOAT32);
NDArray b('c', {K,N}, {-2,-3,0,1,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('c', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('c', {M,N}, {-45., 43., -49., 53., -50., -97., 79., -101., 113., -90., -149., 115., -153., 173., -130.}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
// c.printBuffer();
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_23) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::HALF);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {-8.8, 8.6, -8.4, 8.2, -8.0, -4.3, 4.1, -3.9, 3.7, -3.5, 0.2, -0.4, 0.6, -0.8, 1.}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 0.01));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_24) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {-8.8, 8.6, -8.4, 8.2, -8.0, -4.3, 4.1, -3.9, 3.7, -3.5, 0.2, -0.4, 0.6, -0.8, 1.}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 0.01));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_25) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray b('c', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('c', {M,N}, nd4j::DataType::HALF);
NDArray exp('c', {M,N}, {-8.8, 8.6, -8.4, 8.2, -8.0, -4.3, 4.1, -3.9, 3.7, -3.5, 0.2, -0.4, 0.6, -0.8, 1.}, nd4j::DataType::HALF);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp, 0.01));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_26) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
// 3x4 * 4x5 = 3x5
NDArray a('c', {M,K}, {1.,2,3,4,5,6,7,8,9,10,11,12}, nd4j::DataType::INT64);
NDArray b('c', {K,N}, {-2,-3,0,1,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::FLOAT32);
NDArray c('c', {M,N}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M,N}, {-45., 43., -49., 53., -50., -97., 79., -101., 113., -90., -149., 115., -153., 173., -130.}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
// c.printBuffer();
ASSERT_TRUE(c.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_27) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('f', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::HALF);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {0.1, 0.3, 0.5, 2.5, 2.7, 2.9, 4.9, 5.1, 5.3, 7.3, 7.5, 7.7, 9.7, 9.9, 10.1}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
// c.printBuffer();
ASSERT_TRUE(c.equalsTo(&exp, 0.01));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxM_28) {
const Nd4jLong M = 3;
const Nd4jLong K = 4;
const Nd4jLong N = 5;
NDArray a('c', {M,K}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray b('f', {K,N}, {1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20}, nd4j::DataType::DOUBLE);
NDArray c('f', {M,N}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M,N}, {-1.6, -0.7, 0.2, -0.8, 0.1, 1., -0., 0.9, 1.8, 0.8, 1.7, 2.6, 1.6, 2.5, 3.4}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &b, &c, 1., 0.);
ASSERT_TRUE(c.equalsTo(&exp));
}
*/
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_1) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray x('f', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {0.1, 0.3, 0.5}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_2) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray x('f', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {-1.6, -0.7, 0.2}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_3) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray x('c', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {-1.6, -0.7, 0.2}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_4) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray x('c', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('c', {M}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M}, {-1.6, -0.7, 0.2}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_5) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray x('c', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('c', {M}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M}, {0.1, 0.3, 0.5}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_6) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
NDArray temp('f', {M,N,5}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(6, {0,2});
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {5.5, 5.1, 4.7}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_7) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {M,N,5}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(6, {0,2});
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {5.1, 3.3, 1.5}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_8) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {N,M,5}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(4, {1,2});
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {6.2, 4.5, 1.7}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_9) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(3, {0,1});
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {1.5, 1.8, 1.5}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_10) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(2, {0,1});
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {-0.3, 0.3, 0.9}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_11) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('c', {5,N,M}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(13, {0,2});
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {-12.1, -10.9, -9.7}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_12) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('c', {5,N,M}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(10, {0,2});
NDArray y('c', {M}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M}, {3.3, 3.3, 3.3}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_13) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(2, {0,1}, true);
NDArray y('f', {M}, nd4j::DataType::DOUBLE);
NDArray exp('f', {M}, {-0.3, 0.3, 0.9}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_14) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('c', {5,N,M}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(10, {0,2}, true);
NDArray y('c', {M}, nd4j::DataType::DOUBLE);
NDArray exp('c', {M}, {3.3, 3.3, 3.3}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_15) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(2, {0,1});
NDArray y = temp(17, {0,2});
NDArray exp('f', {M}, {-0.3, 0.3, 0.9}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_16) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray temp1('c', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(2, {0,1});
NDArray y = temp1(17, {0,2});
NDArray exp('c', {M}, {-0.3, 0.3, 0.9}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_17) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(2, {0,1});
NDArray y = temp(17, {0,2}, true);
// y.printShapeInfo();
NDArray exp('f', {1,M,1}, {-0.3, 0.3, 0.9}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_18) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::DOUBLE);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray temp1('c', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(2, {0,1},true);
NDArray y = temp1(17, {0,2},true);
NDArray exp('c', {1,M,1}, {-0.3, 0.3, 0.9}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
/*
TEST_F(CudaBasicsTests2, mmulMxV_19) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray x('f', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('f', {M}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M}, {0.1, 0.3, 0.5}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_20) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray x('f', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('f', {M}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M}, {-1.6, -0.7, 0.2}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_21) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray x('c', {N}, {1,-2,3,-4}, nd4j::DataType::DOUBLE);
NDArray y('c', {M}, nd4j::DataType::FLOAT32);
NDArray exp('c', {M}, {-1.6, -0.7, 0.2}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_22) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray temp('f', {M,N,5}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(6, {0,2});
NDArray y('f', {M}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M}, {5.5, 5.1, 4.7}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_23) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(3, {0,1});
NDArray y('f', {M}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M}, {1.5, 1.8, 1.5}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_24) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray temp('f', {M,N,5}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(6, {0,2},true);
NDArray y('f', {M}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M}, {5.5, 5.1, 4.7}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_25) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('f', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(3, {0,1}, true);
NDArray y('f', {M}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M}, {1.5, 1.8, 1.5}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_26) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray temp1('c', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::FLOAT32);
NDArray x = temp(2, {0,1});
NDArray y = temp1(17, {0,2});
NDArray exp('c', {M}, {-0.3, 0.3, 0.9}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_27) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {N,M}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
a.permutei({1,0});
NDArray temp('f', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray temp1('c', {5,M,N}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::FLOAT32);
NDArray x = temp(2, {0,1},true);
NDArray y = temp1(17, {0,2},true);
NDArray exp('c', {1,M,1}, {-0.3, 0.3, 0.9}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulMxV_28) {
const Nd4jLong M = 3;
const Nd4jLong N = 4;
NDArray a('c', {M,N}, {1.2,1.1,1.0,0.9,0.8,0.7,0.5,0.4,0.3,0.2,0.1,0}, nd4j::DataType::FLOAT32);
NDArray temp('f', {M,N,5}, {16,2,-6,7,2,-2,4,-7,6,4,4,6,-3,1,3,9,1,4,9,10,-10,-3,-8,7,-7,-7,6,9,7,-6,8,7,-3,-3,4,-2,5,-3,-3,4,6,-5,-1,7,-5,4,-10,-1,8,0,-7,4,-10,-7,-8,-9,2,9,7,9}, nd4j::DataType::DOUBLE);
NDArray x = temp(6, {0,2});
NDArray y('f', {M}, nd4j::DataType::FLOAT32);
NDArray exp('f', {M}, {5.1, 3.3, 1.5}, nd4j::DataType::FLOAT32);
nd4j::MmulHelper::mmul(&a, &x, &y, 1., 0.);
ASSERT_TRUE(y.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulDot_1) {
const Nd4jLong N = 4;
NDArray x('c', {N}, {1, 2, 3, 4}, nd4j::DataType::INT32);
NDArray y('f', {N}, {0.1, 0.2, 0.3, 0.4}, nd4j::DataType::FLOAT32);
NDArray z(nd4j::DataType::DOUBLE);
NDArray exp('c', {}, {3}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&x, &y, &z);
ASSERT_TRUE(z.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulDot_2) {
const Nd4jLong N = 4;
NDArray x('c', {1,1,N}, {1,2, 3, 4}, nd4j::DataType::INT32);
NDArray y('f', {1,1,N,1,1,1}, {0.1, 0.2, 0.3, 0.4}, nd4j::DataType::FLOAT32);
NDArray z(nd4j::DataType::DOUBLE);
NDArray exp('c', {}, {3}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&x, &y, &z);
ASSERT_TRUE(z.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulDot_3) {
const Nd4jLong N = 4;
NDArray xBig('c', {4,2}, {1, 0, 2, 0, 3, 0, 4, 0}, nd4j::DataType::INT32);
NDArray yBig('c', {4,3}, {0.1, 0, 0, 0.2, 0, 0, 0.3, 0, 0, 0.4, 0,0}, nd4j::DataType::FLOAT32);
NDArray x = xBig(0, {1}, true);
NDArray y = yBig(0, {1}, true);
NDArray z(nd4j::DataType::DOUBLE);
NDArray exp('c', {}, {3}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&x, &y, &z);
ASSERT_TRUE(z.equalsTo(&exp));
}
//////////////////////////////////////////////////////////////////////////
TEST_F(CudaBasicsTests2, mmulDot_4) {
const Nd4jLong N = 4;
NDArray xBig('f', {4,2}, {1, 2, 3, 4, 0, 0, 0, 0}, nd4j::DataType::INT32);
NDArray yBig('c', {4,3}, {0.1, 0, 0, 0.2, 0, 0, 0.3, 0, 0, 0.4, 0,0}, nd4j::DataType::FLOAT32);
NDArray x = xBig(0, {1}, true);
NDArray y = yBig(0, {1});
NDArray z(nd4j::DataType::DOUBLE);
NDArray exp('c', {}, {3}, nd4j::DataType::DOUBLE);
nd4j::MmulHelper::mmul(&x, &y, &z);
ASSERT_TRUE(z.equalsTo(&exp));
}
*/