raver119 53ca9a76e8
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* launch context reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* per-device LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Fix functions of OpaqueVariablesSet

* thread-local buffers/affinity

Signed-off-by: raver119 <raver119@gmail.com>

* thread safety for LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* more of thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* one more multi threaded test

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* round robin affinity test

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy CudaContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy ContextPool classes/methods

Signed-off-by: raver119 <raver119@gmail.com>

* one legacy test removed

Signed-off-by: raver119 <raver119@gmail.com>

* few more fields rearranged

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext++

Signed-off-by: raver119 <raver119@gmail.com>

* more of OpaqueLaunchContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext -> CudaContext

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handles

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver method

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handle propagated

Signed-off-by: raver119 <raver119@gmail.com>

* blas/solver handles

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* legacy concat implementations replaced with new CustomOp

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* concat now uses way more blocks

Signed-off-by: raver119 <raver119@gmail.com>

* print

Signed-off-by: raver119 <raver119@gmail.com>

* no more triple template mmul

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bitonic sort reorganized

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* type conversions moved to generic impl

Signed-off-by: raver119 <raver119@gmail.com>

* cpu data types pass

Signed-off-by: raver119 <raver119@gmail.com>

* non_max_suppression

Signed-off-by: raver119 <raver119@gmail.com>

* sortByValue fix

Signed-off-by: raver119 <raver119@gmail.com>

* ignore all mixed datatype tests for mmul

Signed-off-by: raver119 <raver119@gmail.com>

* special handling of OpProfiler exceptions

Signed-off-by: raver119 <raver119@gmail.com>

* - one failing concat test in cpp
- Nd4j.tile now uses op internally

Signed-off-by: raver119 <raver119@gmail.com>

* get back dtype exception for legacy arrays deserialization

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 16:52:34 +03:00

836 lines
38 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author raver119@gmail.com
// @author Yurii Shyrma (iuriish@yahoo.com)
//
#include <ops/declarable/helpers/scatter.h>
#include <numeric>
#include <helpers/ShapeUtils.h>
#include <TAD.h>
#include <helpers/ConstantShapeHelper.h>
#include <helpers/ConstantTadHelper.h>
#include <helpers/PointersManager.h>
namespace nd4j {
namespace ops {
namespace helpers {
// template<typename T, bool locking>
// __global__ static void scatterCuda(const int opCode, const int numOfSubArrs,
// void* vx, const Nd4jLong *xShapeInfo, const Nd4jLong *xOffsets,
// void* vy, const Nd4jLong *yShapeInfo, const Nd4jLong *yOffsets,
// const int* indexes, unsigned int arrLenX, unsigned int arrLenY) {
// __shared__ T *x, *y;
// if (locking) {
// for (int e = 0; e < numOfSubArrs; e++) {
// const auto xIndex = indexes[e];
// const bool isOwner = xIndex < gridDim.x ? blockIdx.x == xIndex : blockIdx.x == xIndex % gridDim.x;
// if (!isOwner)
// continue;
// if (threadIdx.x == 0) {
// x = reinterpret_cast<T *>(vx) + xOffsets[xIndex];
// y = reinterpret_cast<T *>(vy) + yOffsets[e];
// }
// __syncthreads();
// for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
// const auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLenX);
// const auto yOffset = shape::getIndexOffset(i, yShapeInfo, arrLenY);
// switch (opCode) {
// case pairwise::Add:
// x[xOffset] += y[yOffset];
// break;
// case pairwise::Subtract:
// x[xOffset] -= y[yOffset];
// break;
// case pairwise::Multiply:
// x[xOffset] *= y[yOffset];
// break;
// case pairwise::Divide:
// x[xOffset] /= y[yOffset];
// break;
// case pairwise::ReverseSubtract:
// x[xOffset] = y[yOffset] - x[xOffset];
// break;
// case pairwise::ReverseDivide:
// x[xOffset] = y[yOffset] / x[xOffset];
// break;
// case pairwise::CopyPws:
// x[xOffset] = y[yOffset];
// break;
// default:
// continue;
// }
// }
// __syncthreads();
// }
// } else {
// for (int e = blockIdx.x; e < numOfSubArrs; e+= gridDim.x) {
// if (threadIdx.x == 0) {
// const auto xIndex = indexes[e];
// x = reinterpret_cast<T *>(vx) + xOffsets[xIndex];
// y = reinterpret_cast<T *>(vy) + yOffsets[e];
// }
// __syncthreads();
// for (Nd4jLong i = threadIdx.x; i < arrLenX; i += blockDim.x) {
// const auto xOffset = shape::getIndexOffset(i, xShapeInfo, arrLenX);
// const auto yOffset = shape::getIndexOffset(i, yShapeInfo, arrLenY);
// switch (opCode) {
// case pairwise::Add:
// x[xOffset] += y[yOffset];
// break;
// case pairwise::Subtract:
// x[xOffset] -= y[yOffset];
// break;
// case pairwise::Multiply:
// x[xOffset] *= y[yOffset];
// break;
// case pairwise::Divide:
// x[xOffset] /= y[yOffset];
// break;
// case pairwise::ReverseSubtract:
// x[xOffset] = y[yOffset] - x[xOffset];
// break;
// case pairwise::ReverseDivide:
// x[xOffset] = y[yOffset] / x[xOffset];
// break;
// case pairwise::CopyPws:
// x[xOffset] = y[yOffset];
// break;
// default:
// continue;
// }
// }
// __syncthreads();
// }
// }
// }
// template <typename T>
// void scatter_(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
// std::vector<int> dims = {0};
// auto inverted = ShapeUtils::evalDimsToExclude(output.rankOf(), dims);
// auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), inverted);
// auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), inverted);
// auto psX = packX.specialShapeInfo();
// auto psY = packY.specialShapeInfo();
// PointersManager manager(context, "scatter");
// auto poX = packX.specialOffsets();
// auto poY = packY.specialOffsets();
// NDArray::prepareSpecialUse({&output}, {&updates, &indices});
// unsigned int tadLengthX = shape::length(packX.primaryShapeInfo());
// unsigned int tadLengthY = shape::length(packY.primaryShapeInfo());
// if (tadLengthX != tadLengthY)
// throw std::runtime_error("scatter: Lengths of TADs must be equal");
// auto blockSize = nd4j::math::nd4j_max<int>(32, nd4j::math::nd4j_min<int>(tadLengthX, 1024));
// if (lock)
// scatterCuda<T, true><<<512, blockSize, 1024, *context->getCudaStream()>>>(op, indices.lengthOf(), output.getSpecialBuffer(), psX, poX, updates.getSpecialBuffer(), psY, poY, reinterpret_cast<int *>(indices.getSpecialBuffer()), tadLengthX, tadLengthY);
// else
// scatterCuda<T, false><<<512, blockSize, 1024, *context->getCudaStream()>>>(op, indices.lengthOf(), output.getSpecialBuffer(), psX, poX, updates.getSpecialBuffer(), psY, poY, reinterpret_cast<int *>(indices.getSpecialBuffer()), tadLengthX, tadLengthY);
// NDArray::registerSpecialUse({&output}, {&updates, &indices});
// manager.synchronize();
// }
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - input/output
template<typename X, typename Y>
__global__ static void scatterLockCuda(const int opCode,
const void* vx, const Nd4jLong *xShapeInfo,
const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets,
void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets,
const Nd4jLong xLen, const Nd4jLong yTadLen, const Nd4jLong zTadLen) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
__shared__ bool vectorCase;
if(threadIdx.x == 0)
vectorCase = yTadLen == xLen && shape::rank(xShapeInfo) == 1;
__syncthreads();
for (int e = 0; e < xLen; e++) {
const Nd4jLong zIndex = x[shape::getIndexOffset(e, xShapeInfo, xLen)];
const bool isOwner = zIndex < gridDim.x ? blockIdx.x == zIndex : blockIdx.x == zIndex % gridDim.x;
if (!isOwner)
continue;
if(vectorCase) { // means z_rank = 1 and might be yTadLen != zTadLen in this case
if(threadIdx.x != 0)
continue;
const auto yOffset = shape::getIndexOffset(e, yTadShapeInfo, yTadLen);
const auto zOffset = shape::getIndexOffset(zIndex, zTadShapeInfo, zTadLen);
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
else { // yTadLen == zTadLen in this case
const Y* yTad = y + yOffsets[e];
Y* zTad = z + zOffsets[zIndex];
for (Nd4jLong i = threadIdx.x; i < zTadLen; i += blockDim.x) {
const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo, zTadLen);
const auto zOffset = shape::getIndexOffset(i, zTadShapeInfo, zTadLen);
switch (opCode) {
case pairwise::Add:
zTad[zOffset] += yTad[yOffset];
break;
case pairwise::Subtract:
zTad[zOffset] -= yTad[yOffset];
break;
case pairwise::Multiply:
zTad[zOffset] *= yTad[yOffset];
break;
case pairwise::Divide:
zTad[zOffset] /= yTad[yOffset];
break;
case pairwise::ReverseSubtract:
zTad[zOffset] = yTad[yOffset] - zTad[zOffset];
break;
case pairwise::ReverseDivide:
zTad[zOffset] = yTad[yOffset] / zTad[zOffset];
break;
case pairwise::CopyPws:
zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MaxPairwise:
if(zTad[zOffset] < yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MinPairwise:
if(zTad[zOffset] > yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
default:
continue;
}
}
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void scatterLockCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int opCode,
const void* vx, const Nd4jLong *xShapeInfo,
const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets,
void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets,
const Nd4jLong xLen, const Nd4jLong yTadLen, const Nd4jLong zTadLen) {
scatterLockCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yTadShapeInfo, yOffsets, vz, zTadShapeInfo, zOffsets, xLen, yTadLen, zTadLen);
}
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - input/output
template<typename X, typename Y>
__global__ static void scatterCuda(const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
__shared__ int xRank, yRank, zRank;
__shared__ Nd4jLong yLen, totalThreads, *coord;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
coord = reinterpret_cast<Nd4jLong*>(shmem);
yLen = shape::length(yShapeInfo);
totalThreads = gridDim.x * blockDim.x;
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
}
__syncthreads();
auto xCoord = coord + threadIdx.x * (xRank + yRank + zRank);
auto yCoord = xCoord + xRank;
auto zCoord = yCoord + yRank;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < yLen; i += totalThreads) {
shape::index2coords(yRank, shape::shapeOf(const_cast<Nd4jLong*>(yShapeInfo)), i, yLen, yCoord);
for (uint j = 0; j < xRank; ++j)
xCoord[j] = yCoord[j];
const auto xOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), shape::stride(const_cast<Nd4jLong*>(xShapeInfo)), xCoord, xRank);
zCoord[0] = x[xOffset];
for (uint j = 0; j < yRank - xRank; ++j)
zCoord[j + 1] = yCoord[xRank + j];
const auto yOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(yShapeInfo)), shape::stride(const_cast<Nd4jLong*>(yShapeInfo)), yCoord, yRank);
const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), shape::stride(const_cast<Nd4jLong*>(zShapeInfo)), zCoord, zRank);
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void scatterCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
scatterCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
}
///////////////////////////////////////////////////////////////////
void scatter(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
PointersManager manager(context, "scatter");
NDArray::prepareSpecialUse({&output}, {&updates, &indices});
if(lock) {
const int xRank = indices.rankOf();
std::vector<int> zTadDims = ShapeUtils::evalDimsToExclude(output.rankOf(), {0});
std::vector<int> yTadDims(xRank);
std::iota(yTadDims.begin(), yTadDims.end(), xRank == 1 ? 0 : xRank);
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), yTadDims);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), zTadDims);
const Nd4jLong zTadLen = shape::length(packZ.primaryShapeInfo());
const Nd4jLong yTadLen = shape::length(packY.primaryShapeInfo());
const auto threadsPerBlock = nd4j::math::nd4j_max<int>(32, nd4j::math::nd4j_min<int>(zTadLen, 1024));
const auto blocksPerGrid = indices.lengthOf();
const auto xType = indices.dataType();
const auto yType = updates.dataType();
BUILD_DOUBLE_SELECTOR(xType, yType, scatterLockCudaLauncher, (blocksPerGrid, threadsPerBlock, 1024, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), packY.specialShapeInfo(), packY.specialOffsets(), output.getSpecialBuffer(), packZ.specialShapeInfo(), packZ.specialOffsets(), indices.lengthOf(), yTadLen, zTadLen), INDEXING_TYPES, GENERIC_NUMERIC_TYPES);
}
else {
const int threadsPerBlock = MAX_NUM_THREADS / 8;
const int blocksPerGrid = (updates.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = 8 * threadsPerBlock * (indices.rankOf() + updates.rankOf() + output.rankOf()) + 128;
const auto xType = indices.dataType();
const auto yType = updates.dataType();
BUILD_DOUBLE_SELECTOR(xType, yType, scatterCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo()), INDEXING_TYPES, GENERIC_NUMERIC_TYPES);
}
NDArray::registerSpecialUse({&output}, {&updates, &indices});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - output
template<typename X, typename Y>
__global__ static void scatterNDLockCuda(const int opCode,
const void* vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets,
const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets,
void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets,
const Nd4jLong *zShapeInfo,
const Nd4jLong numOfXTads, const Nd4jLong numOfZTads, const Nd4jLong yTadLen) {
// zTadLen == yTadLen if numOfZTads > 1, in opposite case z and y are vectors
// numOfXTads == numOfYTads if numOfZTads > 1, in opposite case z and y are vectors
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
__shared__ Nd4jLong *zTadCoords;
__shared__ int xLastDim;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
zTadCoords = reinterpret_cast<Nd4jLong*>(shmem);
xLastDim = xTadShapeInfo[1]; // xTad has rank = 1 always
}
__syncthreads();
Nd4jLong* zTadCoordsPerThread = zTadCoords + threadIdx.x * xLastDim;
for (Nd4jLong i = 0; i < numOfXTads; ++i) {
const X* xTad = x + xOffsets[i];
for (uint k = 0; k < xLastDim; ++k)
zTadCoordsPerThread[k] = xTad[shape::getIndexOffset(k, xTadShapeInfo, xLastDim)];
const auto zTadIndex = shape::coords2index(xLastDim, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), zTadCoordsPerThread);
const bool isOwner = zTadIndex < gridDim.x ? blockIdx.x == zTadIndex : blockIdx.x == zTadIndex % gridDim.x;
if(!isOwner)
continue;
if(numOfZTads == 1) { // yTadLen == numOfXTads in this case
if(threadIdx.x != 0)
continue;
const auto yOffset = shape::getIndexOffset(i, yTadShapeInfo, yTadLen);
const auto zOffset = shape::getIndexOffset(zTadIndex, zTadShapeInfo, yTadLen);
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
else {
const auto yTad = y + yOffsets[i];
const auto zTad = z + zOffsets[zTadIndex];
for (Nd4jLong j = threadIdx.x; j < yTadLen; j += blockDim.x) {
const auto yOffset = shape::getIndexOffset(j, yTadShapeInfo, yTadLen);
const auto zOffset = shape::getIndexOffset(j, zTadShapeInfo, yTadLen);
switch (opCode) {
case pairwise::Add:
zTad[zOffset] += yTad[yOffset];
break;
case pairwise::Subtract:
zTad[zOffset] -= yTad[yOffset];
break;
case pairwise::Multiply:
zTad[zOffset] *= yTad[yOffset];
break;
case pairwise::Divide:
zTad[zOffset] /= yTad[yOffset];
break;
case pairwise::ReverseSubtract:
zTad[zOffset] = yTad[yOffset] - zTad[zOffset];
break;
case pairwise::ReverseDivide:
zTad[zOffset] = yTad[yOffset] / zTad[zOffset];
break;
case pairwise::CopyPws:
zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MaxPairwise:
if(zTad[zOffset] < yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
case pairwise::MinPairwise:
if(zTad[zOffset] > yTad[yOffset]) zTad[zOffset] = yTad[yOffset];
break;
default:
continue;
}
}
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void scatterNDLockCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int opCode,
const void* vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets,
const void* vy, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yOffsets,
void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets,
const Nd4jLong *zShapeInfo,
const Nd4jLong numOfXTads, const Nd4jLong numOfZTads, const Nd4jLong zTadLen) {
scatterNDLockCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode,
vx, xTadShapeInfo, xOffsets,
vy, yTadShapeInfo, yOffsets,
vz, zTadShapeInfo, zOffsets,
zShapeInfo,
numOfXTads, numOfZTads, zTadLen);
}
///////////////////////////////////////////////////////////////////
// x - indices, y - updates, z - output
template<typename X, typename Y>
__global__ static void scatterNDCuda(const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
const auto x = reinterpret_cast<const X*>(vx);
const auto y = reinterpret_cast<const Y*>(vy);
auto z = reinterpret_cast<Y*>(vz);
__shared__ int xRank, yRank, zRank, xLastDim;
__shared__ Nd4jLong yLen, totalThreads, *coord;
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
coord = reinterpret_cast<Nd4jLong*>(shmem);
yLen = shape::length(yShapeInfo);
totalThreads = gridDim.x * blockDim.x;
xRank = shape::rank(xShapeInfo);
yRank = shape::rank(yShapeInfo);
zRank = shape::rank(zShapeInfo);
xLastDim = xShapeInfo[xRank];
}
__syncthreads();
auto xCoord = coord + threadIdx.x * (xRank + yRank + zRank);
auto yCoord = xCoord + xRank;
auto zCoord = yCoord + yRank;
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
for (Nd4jLong i = tid; i < yLen; i += totalThreads) {
shape::index2coords(yRank, shape::shapeOf(const_cast<Nd4jLong*>(yShapeInfo)), i, yLen, yCoord);
for (uint j = 0; j < xRank - 1; ++j)
xCoord[j] = yCoord[j];
for (uint j = 0; j < xLastDim; ++j) {
xCoord[xRank - 1] = j;
const auto xOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), shape::stride(const_cast<Nd4jLong*>(xShapeInfo)), xCoord, xRank);
zCoord[j] = x[xOffset];
}
for (uint j = xLastDim; j < zRank; ++j)
zCoord[j] = yCoord[yRank - zRank + j];
const auto yOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(yShapeInfo)), shape::stride(const_cast<Nd4jLong*>(yShapeInfo)), yCoord, yRank);
const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), shape::stride(const_cast<Nd4jLong*>(zShapeInfo)), zCoord, zRank);
switch (opCode) {
case pairwise::Add:
z[zOffset] += y[yOffset];
break;
case pairwise::Subtract:
z[zOffset] -= y[yOffset];
break;
case pairwise::Multiply:
z[zOffset] *= y[yOffset];
break;
case pairwise::Divide:
z[zOffset] /= y[yOffset];
break;
case pairwise::ReverseSubtract:
z[zOffset] = y[yOffset] - z[zOffset];
break;
case pairwise::ReverseDivide:
z[zOffset] = y[yOffset] / z[zOffset];
break;
case pairwise::CopyPws:
z[zOffset] = y[yOffset];
break;
case pairwise::MaxPairwise:
if(z[zOffset] < y[yOffset]) z[zOffset] = y[yOffset];
break;
case pairwise::MinPairwise:
if(z[zOffset] > y[yOffset]) z[zOffset] = y[yOffset];
break;
default:
continue;
}
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Y>
static void scatterNDCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
const int opCode,
const void *vx, const Nd4jLong *xShapeInfo,
const void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
scatterNDCuda<X,Y><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(opCode, vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
}
///////////////////////////////////////////////////////////////////
void scatterND(nd4j::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) {
const int xRank = indices.rankOf();
const int yRank = updates.rankOf();
const int zRank = output.rankOf();
PointersManager manager(context, "scatterND");
NDArray::prepareSpecialUse({&output}, {&updates, &indices});
if(lock) {
const int xLastDim = indices.sizeAt(-1);
// y_tad and z_tad have the same shape
std::vector<int> yTadDims(zRank - xLastDim), zTadDims(zRank - xLastDim);
for (int j = 0, i = zTadDims.size() - 1; i >=0 ; --i, ++j) {
yTadDims[i] = yRank - 1 - j;
zTadDims[i] = zRank - 1 - j;
}
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(indices.getShapeInfo(), {xRank - 1});
auto packY = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(updates.getShapeInfo(), yTadDims);
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output.getShapeInfo(), zTadDims);
const int threadsPerBlock = MAX_NUM_THREADS / 4;
const int blocksPerGrid = packZ.numberOfTads();
const int sharedMem = 8 * threadsPerBlock * xLastDim + 128;
const auto xType = indices.dataType();
const auto yType = updates.dataType();
BUILD_DOUBLE_SELECTOR(xType, yType, scatterNDLockCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), packX.specialShapeInfo(), packX.specialOffsets(), updates.getSpecialBuffer(), packY.specialShapeInfo(), packY.specialOffsets(), output.getSpecialBuffer(), packZ.specialShapeInfo(), packZ.specialOffsets(), output.getSpecialShapeInfo(), packX.numberOfTads(), packZ.numberOfTads(), shape::length(packY.primaryShapeInfo())), INDEXING_TYPES, GENERIC_NUMERIC_TYPES);
}
else {
const int threadsPerBlock = MAX_NUM_THREADS / 8;
const int blocksPerGrid = (updates.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = 8 * threadsPerBlock * (xRank + yRank + zRank) + 128;
const auto xType = indices.dataType();
const auto yType = updates.dataType();
BUILD_DOUBLE_SELECTOR(xType, yType, scatterNDCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), op, indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.getSpecialBuffer(), output.getSpecialShapeInfo()), INDEXING_TYPES, GENERIC_NUMERIC_TYPES);
}
NDArray::registerSpecialUse({&output}, {&updates, &indices});
manager.synchronize();
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Z>
__global__ void scatterForLossCuda(const void *vx, const Nd4jLong *xShapeInfo,
void *vy, const Nd4jLong *yShapeInfo,
void *vz, const Nd4jLong *zShapeInfo) {
const auto x = reinterpret_cast<const X*>(vx);
auto y = reinterpret_cast<Z*>(vy);
auto z = reinterpret_cast<Z*>(vz);
__shared__ Nd4jLong xLen, *sharedMem;
__shared__ int xRank; // xRank = zRank, yRank = xRank + 1
if (threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
xLen = shape::length(xShapeInfo);
xRank = shape::rank(xShapeInfo);
}
__syncthreads();
const auto xInd = threadIdx.x + blockIdx.x * blockDim.x;
if(xInd >= xLen)
return;
auto coords = sharedMem + threadIdx.x * (xRank + 1);
shape::index2coords(xRank, xShapeInfo + 1, xInd, xLen, coords);
// y last coordinate
coords[xRank] = x[shape::getOffset(0, xShapeInfo + 1, xShapeInfo + xRank + 1, coords, xRank)];
const auto yOffset = shape::getOffset(0, yShapeInfo + 1, yShapeInfo + xRank + 2, coords, xRank + 1);
if(z == nullptr) { // gradient calculation
y[yOffset] -= 1.f;
}
else {
z[shape::getOffset(0, zShapeInfo + 1, zShapeInfo + xRank + 1, coords, xRank)] = y[yOffset];
}
}
///////////////////////////////////////////////////////////////////
template<typename X, typename Z>
static void scatterForLossCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong* xShapeInfo, void *vy, const Nd4jLong* yShapeInfo, void *vz, const Nd4jLong* zShapeInfo) {
scatterForLossCuda<X, Z><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vy, yShapeInfo, vz, zShapeInfo);
}
///////////////////////////////////////////////////////////////////
void scatterForLoss(nd4j::LaunchContext* context, const NDArray& indices, NDArray& updates, NDArray& output, const bool calcGrad) {
// shapes of indices and output must be the same
// shape of indices should be the same as updates shape with last dimension excluded, for example if updates is {a,b,c} then indices should be {a,b}
PointersManager manager(context, "scatterForLoss");
const int threadsPerBlock = MAX_NUM_THREADS / 2;
const int blocksPerGrid = (indices.lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
const int sharedMem = updates.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128;
if(calcGrad) {
NDArray::prepareSpecialUse({&updates}, {&indices});
BUILD_DOUBLE_SELECTOR(indices.dataType(), updates.dataType(), scatterForLossCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.specialBuffer(), updates.specialShapeInfo(), nullptr, nullptr), INDEXING_TYPES, FLOAT_TYPES);
NDArray::registerSpecialUse({&updates}, {&indices});
}
else {
NDArray::prepareSpecialUse({&output}, {&indices, &updates});
BUILD_DOUBLE_SELECTOR(indices.dataType(), updates.dataType(), scatterForLossCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), indices.getSpecialBuffer(), indices.getSpecialShapeInfo(), updates.getSpecialBuffer(), updates.getSpecialShapeInfo(), output.specialBuffer(), output.specialShapeInfo()), INDEXING_TYPES, FLOAT_TYPES);
NDArray::registerSpecialUse({&output}, {&indices, &updates});
}
manager.synchronize();
}
}
}
}
// PointersManager manager(&context, "NativeOps::concat");
// PointersManager::printDevContentOnDev<int>(vx, 2);
// PointersManager::printDevContentOnDev<Nd4jLong>(xShapeInfo, 8);
// PointersManager::printDevContentOnDev<float>(vy, 8);
// PointersManager::printDevContentOnDev<Nd4jLong>(yShapeInfo, 8);
// PointersManager::printDevContentOnDev<Nd4jLong>(zShapeInfo, 8);
// manager.printDevContentOnHost<int>(indices.getSpecialBuffer(), indices.lengthOf());
// manager.printDevContentOnHost<Nd4jLong>(indices.getSpecialShapeInfo(), shape::shapeInfoLength(indices.rankOf()));
// manager.printDevContentOnHost<float>(updates.getSpecialBuffer(), updates.lengthOf());
// manager.printDevContentOnHost<Nd4jLong>(updates.getSpecialShapeInfo(), shape::shapeInfoLength(updates.rankOf()));
// manager.printDevContentOnHost<Nd4jLong>(output.getSpecialShapeInfo(), shape::shapeInfoLength(output.rankOf()));
// printf("!!!!!!!\n");
// manager.printDevContentOnHost<Nd4jLong>(packX.specialShapeInfo(), 2*shape::rank(packX.primaryShapeInfo()) + 4);
// manager.printDevContentOnHost<Nd4jLong>(packX.specialOffsets(), packX.numberOfTads());
// manager.printDevContentOnHost<Nd4jLong>(packY.specialShapeInfo(), 2*shape::rank(packY.primaryShapeInfo()) + 4);
// manager.printDevContentOnHost<Nd4jLong>(packY.specialOffsets(), packY.numberOfTads());
// manager.printDevContentOnHost<Nd4jLong>(packZ.specialShapeInfo(), 2*shape::rank(packZ.primaryShapeInfo()) + 4);
// manager.printDevContentOnHost<Nd4jLong>(packZ.specialOffsets(), packZ.numberOfTads());
// printf("dddddddd\n");
// shape::printShapeInfoLinear(packY.primaryShapeInfo());