* fix pad javadoc and @see links. (#72) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * [WIP] More fixes (#73) * special tests for ConstantTadHelper/ConstantShapeHelper Signed-off-by: raver119 <raver119@gmail.com> * release methods for data buffers Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary TadPack C++/Java side (#74) Signed-off-by: raver119 <raver119@gmail.com> * Zoo model TF import test updates (#75) * argLine fix, update compression_gru comment * updated comment for xception * undid but commented argLine change * updated xlnet comment * copyright headers * - new NDArray methods like()/ulike() (#77) - fix for depthwise_conv2d_bp + special test Signed-off-by: raver119 <raver119@gmail.com> * upsampling2d fix CUDA Signed-off-by: raver119 <raver119@gmail.com> * DL4J trace logging (#79) * MLN/CG trace logging for debugging Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tiny tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * strided_slice_bp shape fn leak fix Signed-off-by: raver119 <raver119@gmail.com> * SameDiff fixes and naming (#78) * remove SDVariable inplace methods * import methods * npe fix in OpVal * removed SameDiff inplace ops from tests * Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything * quick fixes * javadoc * SDVariable eval with placeholders * use regex match * better matching * initial commit Signed-off-by: raver119 <raver119@gmail.com> * initial commit Signed-off-by: raver119 <raver119@gmail.com> * fix javadoc. (#76) * fix javadoc. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace most @see with @link s. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * 4 additional tests Signed-off-by: raver119 <raver119@gmail.com> * launch context reorganization Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext reorganization Signed-off-by: raver119 <raver119@gmail.com> * per-device LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * Various DL4J/ND4J fixes (#81) * #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Refactor NativeOps.h to export C functions * Actually export functions from NativeOps.h * Adapt the Java wrappers in ND4J generated with JavaCPP * Create C wrappers for some of the C++ classes currently used by ND4J * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * remove duplicate code in createBufferDetached. (#83) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Keras model import - updater lr fix (#84) * Keras model import - updater lr fix Signed-off-by: eraly <susan.eraly@gmail.com> * Keras model import - updater lr fix, cleanup Signed-off-by: eraly <susan.eraly@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Fix functions of OpaqueVariablesSet * thread-local buffers/affinity Signed-off-by: raver119 <raver119@gmail.com> * thread safety for LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * more of thread safety Signed-off-by: raver119 <raver119@gmail.com> * one more multi threaded test Signed-off-by: raver119 <raver119@gmail.com> * SameDiff Convolution Config validation, better output methods (#82) * Conv Config validation & tests Signed-off-by: Ryan Nett <rnett@skymind.io> * stackOutputs utility method Signed-off-by: Ryan Nett <rnett@skymind.io> * use constructor for validation, support negative kernel sizes (infered from weights) Signed-off-by: Ryan Nett <rnett@skymind.io> * better output methods Signed-off-by: Ryan Nett <rnett@skymind.io> * move output to be with fit and evaluate Signed-off-by: Ryan Nett <rnett@skymind.io> * fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * more fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * refactor duplicate code from pad methods. (#86) * refactor duplicate code from pad methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace switch with if. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes and improvements (#87) * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6488 ElementWiseVertex broadcast support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Constructors and broadcast supported it Transforms.max/min Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8054 ElementWiseVertex now supports broadcast inputs Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8057 Nd4j.create overload dtype fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7551 ND4J Shape validation fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Numpy boolean import (#91) * numpy bool type Signed-off-by: raver119 <raver119@gmail.com> * numpy bool java side Signed-off-by: raver119 <raver119@gmail.com> * remove create method with unused parameter. (#89) * remove create method with unused parameter. * removed more unused methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * removing more unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * last removal of unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * remove createSparse methods. (#92) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes (#90) * Deprecate Old*Op instances Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8063 #8054 Broadcast exceptions + cleanup inplace ops Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove bad test condition Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7993 Fix shape function issue in crop_and_resize op Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J SameDiff lambda layer fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8029 Fix for pnorm backprop math Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8038 Fix Op profiler NaN/Inf triggering + add tests (#93) Signed-off-by: AlexDBlack <blacka101@gmail.com> * createUninitializedDetached refactoring. (#94) * wip * update interface, add null implementations. * Breaking one test in a weird way. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * createUninitializedDetached refactored. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * cuda build fix for issues introduced by recent refactoring Signed-off-by: raver119 <raver119@gmail.com> * [WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io> * build fix Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI (#97) Signed-off-by: raver119 <raver119@gmail.com> * temporary stack fix Signed-off-by: raver119 <raver119@gmail.com> * round robin affinity test Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy CudaContext methods Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy ContextPool classes/methods Signed-off-by: raver119 <raver119@gmail.com> * one legacy test removed Signed-off-by: raver119 <raver119@gmail.com> * few more fields rearranged Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext++ Signed-off-by: raver119 <raver119@gmail.com> * more of OpaqueLaunchContext methods Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext -> CudaContext Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * cusolver handles Signed-off-by: raver119 <raver119@gmail.com> * typo Signed-off-by: raver119 <raver119@gmail.com> * cusolver method Signed-off-by: raver119 <raver119@gmail.com> * cusolver handle propagated Signed-off-by: raver119 <raver119@gmail.com> * blas/solver handles Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * legacy concat implementations replaced with new CustomOp Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * concat now uses way more blocks Signed-off-by: raver119 <raver119@gmail.com> * print Signed-off-by: raver119 <raver119@gmail.com> * no more triple template mmul Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bitonic sort reorganized Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * type conversions moved to generic impl Signed-off-by: raver119 <raver119@gmail.com> * cpu data types pass Signed-off-by: raver119 <raver119@gmail.com> * non_max_suppression Signed-off-by: raver119 <raver119@gmail.com> * sortByValue fix Signed-off-by: raver119 <raver119@gmail.com> * ignore all mixed datatype tests for mmul Signed-off-by: raver119 <raver119@gmail.com> * special handling of OpProfiler exceptions Signed-off-by: raver119 <raver119@gmail.com> * - one failing concat test in cpp - Nd4j.tile now uses op internally Signed-off-by: raver119 <raver119@gmail.com> * get back dtype exception for legacy arrays deserialization Signed-off-by: raver119 <raver119@gmail.com>
270 lines
13 KiB
Plaintext
270 lines
13 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author raver119@gmail.com
|
|
//
|
|
|
|
#include <ops/declarable/helpers/dropout.h>
|
|
#include <NativeOps.h>
|
|
#include <vector>
|
|
#include <memory>
|
|
#include <cuda_exception.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
template <typename T>
|
|
static __global__ void dropoutSimpleKernel(void const* inputBuf, Nd4jLong const* inputShape, void* outputBuf, Nd4jLong* outputShape, double probVal, int inLen, nd4j::graph::RandomGenerator* nodeRng) {
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
__shared__ T const* input;
|
|
__shared__ T* output;
|
|
|
|
if (threadIdx.x == 0) {
|
|
input = reinterpret_cast<T const*>(inputBuf);
|
|
output = reinterpret_cast<T*>(outputBuf);
|
|
}
|
|
|
|
for (Nd4jLong e = 0; e < inLen; ++e) {
|
|
T val = nodeRng->relativeT(e, T(0.f), T(1.f));
|
|
|
|
if (double(val) < probVal)
|
|
output[shape::getIndexOffset(e, outputShape, inLen)] = T(input[shape::getIndexOffset(e, inputShape, inLen)] / probVal);
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
static void dropoutSimple(nd4j::LaunchContext* context, NDArray const* input, NDArray* output, double probValue, int seed) {
|
|
nd4j::graph::RandomGenerator nodeRng(3019L, seed);
|
|
int inLen = input->lengthOf();
|
|
nd4j::graph::RandomGenerator* dRandom;
|
|
auto stream = context->getCudaStream();
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
|
|
auto err = cudaMalloc(&dRandom, sizeof(nd4j::graph::RandomGenerator));
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::dropoutSimple: Cannot allocate device memory for random generator.", err);
|
|
}
|
|
err = cudaMemcpy(dRandom, &nodeRng, sizeof(nd4j::graph::RandomGenerator), cudaMemcpyHostToDevice);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::dropoutSimple: Cannot set up device memory for random generator.", err);
|
|
}
|
|
|
|
dropoutSimpleKernel<T><<<128, 256, 1024, *stream>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), probValue, inLen, dRandom);
|
|
err = cudaFree(dRandom);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::dropoutSimple: Cannot deallocate device memory for random generator.", err);
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
template <typename T>
|
|
int _dropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
|
|
if (reduceShape == nullptr){
|
|
dropoutSimple<T>(context.launchContext(), input, output, probValue, seed);
|
|
}
|
|
else {
|
|
REQUIRE_TRUE(reduceShape->lengthOf() <= input->rankOf(), 0, "dropout: Noise shape should be fittable to input");
|
|
|
|
std::vector<Nd4jLong> dims(reduceShape->lengthOf());
|
|
reduceShape->syncToHost(); // to ensure that follows are actual
|
|
bool fit = true;
|
|
// PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(fit))
|
|
for( int i = 0; i < dims.size(); i++ ) {
|
|
if (fit) {
|
|
dims[i] = reduceShape->e<Nd4jLong>(i);
|
|
for (int e = 0; e < input->rankOf(); ++e)
|
|
if (fit)
|
|
if (input->sizeAt(e) % dims[i]) {
|
|
fit = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check dims to fit input
|
|
REQUIRE_TRUE(fit, 0, "dropout: Noise shape should fit to input rank.");
|
|
std::unique_ptr<NDArray> chunk(new NDArray('c', dims, output->dataType(), context.launchContext()));
|
|
chunk->assign(1.f);
|
|
//chunk->applyRandom<randomOps::DropOutInverted<T>>(rng, nullptr, chunk.get(), &probValue);
|
|
//NativeOpExecutioner::execRandom(random::DropOutInverted, rng, chunk->buffer(), chunk->shapeInfo(), chunk->buffer(), chunk->shapeInfo(), &prob);
|
|
dropoutSimple<T>(context.launchContext(), chunk.get(), chunk.get(), probValue, seed);
|
|
// broadcast chunk to full matrix
|
|
std::unique_ptr<NDArray> dropOutMultiplier(new NDArray(*input));
|
|
dropOutMultiplier->assign(1.f);
|
|
|
|
*dropOutMultiplier += *chunk;
|
|
|
|
output->assign(*input * *dropOutMultiplier); //input->applyPairwiseTransform(pairwise::Multiply, dropOutMultiplier.get(), output, nullptr);
|
|
}
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
int dropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
auto xType = input->dataType();
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, return _dropOutFunctor, (context, input, output, reduceShape, seed, probValue), FLOAT_TYPES);
|
|
}
|
|
|
|
/////////////////////////////////// backrpopagations ///////////////////////////////////////////////
|
|
template <typename T>
|
|
static __global__ void dropoutBPKernel(void* outputBuf, Nd4jLong* outputShape, void* gradOutBuf, Nd4jLong* gradOutShape, double probValue) {
|
|
__shared__ T* output;
|
|
__shared__ T* input;
|
|
__shared__ int len;
|
|
|
|
if (threadIdx.x == 0) {
|
|
len = shape::length(outputShape);
|
|
output = reinterpret_cast<T*>(outputBuf);
|
|
input = reinterpret_cast<T*>(gradOutBuf);
|
|
}
|
|
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
|
|
for (int e = tid; e < len; e += step) {
|
|
if (output[shape::getIndexOffset(e, outputShape, len)] != T(0.))
|
|
output[shape::getIndexOffset(e, outputShape, len)] = T(input[shape::getIndexOffset(e, gradOutShape, len)] / probValue);
|
|
|
|
}
|
|
}
|
|
template <typename T>
|
|
static int dropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
int res = dropOutFunctor(context, input, output, reduceShape, seed, probValue);
|
|
auto stream = context.launchContext()->getCudaStream();
|
|
|
|
if (ND4J_STATUS_OK == res)
|
|
dropoutBPKernel<T><<<128, 256, 1024, *stream>>>(output->specialBuffer(), output->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), probValue);
|
|
|
|
return res;
|
|
}
|
|
|
|
template <typename T>
|
|
static __global__ void alphaDropoutSimpleKernel(void const* inputBuf, Nd4jLong const* inputShape, void* outputBuf, Nd4jLong* outputShape, double probValue, double alpha, double alpha1, double beta, int inLen, nd4j::graph::RandomGenerator* nodeRng) {
|
|
auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
auto step = blockDim.x * gridDim.x;
|
|
__shared__ T const* input;
|
|
__shared__ T* output;
|
|
|
|
if (threadIdx.x == 0) {
|
|
input = reinterpret_cast<T const*>(inputBuf);
|
|
output = reinterpret_cast<T*>(outputBuf);
|
|
}
|
|
|
|
for (auto e = tid; e < inLen; e += step) {
|
|
T val = nodeRng->relativeT(e, T(0.f), T(1.f));
|
|
T xVal = input[shape::getIndexOffset(e, inputShape, inLen)];
|
|
output[shape::getIndexOffset(e, outputShape, inLen)] = (val >= T(probValue) ? T(alpha * beta + alpha1) : T(alpha * (double)xVal + alpha1));
|
|
}
|
|
}
|
|
template <typename T>
|
|
static void alphaDropoutSimple(nd4j::LaunchContext* context, NDArray const* input, NDArray* output, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
nd4j::graph::RandomGenerator nodeRng(3019L, seed), *dRandom;
|
|
auto stream = context->getCudaStream();
|
|
auto err = cudaMalloc(&dRandom, sizeof(nd4j::graph::RandomGenerator));
|
|
NDArray::prepareSpecialUse({output}, {input});
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot allocate device memory for random generator.", err);
|
|
}
|
|
err = cudaMemcpy(dRandom, &nodeRng, sizeof(nd4j::graph::RandomGenerator), cudaMemcpyHostToDevice);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot set up device memory for random generator.", err);
|
|
}
|
|
|
|
alphaDropoutSimpleKernel<T><<<128, 256, 1024, *stream>>>(input->getSpecialBuffer(), input->getSpecialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), probValue, alpha, alpha1, beta, output->lengthOf(), dRandom);
|
|
|
|
err = cudaFree(dRandom);
|
|
if (err) {
|
|
throw cuda_exception::build("helpers::alphaDropoutSimple: Cannot deallocate device memory for random generator.", err);
|
|
}
|
|
NDArray::registerSpecialUse({output}, {input});
|
|
}
|
|
|
|
template <typename T>
|
|
static int alphaDropOutFunctor_(graph::Context& context, NDArray* input, NDArray* output,
|
|
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
|
|
if (reduceShape == nullptr){
|
|
alphaDropoutSimple<T>(context.launchContext(), input, output, seed, probValue, alpha, alpha1, beta);
|
|
}
|
|
else {
|
|
REQUIRE_TRUE(reduceShape->lengthOf() <= input->rankOf(), 0, "dropout: Noise shape should be fittable to input");
|
|
|
|
std::vector<Nd4jLong> dims(reduceShape->lengthOf());
|
|
reduceShape->syncToHost(); // to ensure that follows are actual
|
|
bool fit = true;
|
|
// PRAGMA_OMP_PARALLEL_FOR_ARGS(firstprivate(fit))
|
|
for( int i = 0; i < dims.size(); i++ ) {
|
|
if (fit) {
|
|
dims[i] = reduceShape->e<Nd4jLong>(i);
|
|
for (int e = 0; e < input->rankOf(); ++e)
|
|
if (fit)
|
|
if (input->sizeAt(e) % dims[i]) {
|
|
fit = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// check dims to fit input
|
|
REQUIRE_TRUE(fit, 0, "alpha_dropout: Noise shape should fit to input rank.");
|
|
std::unique_ptr<NDArray> chunk(new NDArray('c', dims, output->dataType(), context.launchContext()));
|
|
chunk->assign(1.f);
|
|
//chunk->applyRandom<randomOps::DropOutInverted<T>>(rng, nullptr, chunk.get(), &probValue);
|
|
//NativeOpExecutioner::execRandom(random::DropOutInverted, rng, chunk->buffer(), chunk->shapeInfo(), chunk->buffer(), chunk->shapeInfo(), &prob);
|
|
alphaDropoutSimple<T>(context.launchContext(), chunk.get(), chunk.get(), seed, probValue, alpha, alpha1, beta);
|
|
// broadcast chunk to full matrix
|
|
std::unique_ptr<NDArray> dropOutMultiplier(new NDArray(*input));
|
|
dropOutMultiplier->assign(1.f);
|
|
|
|
*dropOutMultiplier += *chunk;
|
|
|
|
output->assign(*input * *dropOutMultiplier); //input->applyPairwiseTransform(pairwise::Multiply, dropOutMultiplier.get(), output, nullptr);
|
|
}
|
|
|
|
|
|
return Status::OK();
|
|
}
|
|
|
|
template <typename T>
|
|
int alphaDropOutFunctorBP_(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output,
|
|
NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
|
|
int res = alphaDropOutFunctor(context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta);
|
|
if (res == ND4J_STATUS_OK) {
|
|
(*output) *= alpha;
|
|
(*output) *= (*gradOut); //->applyPairwiseTransform<transform::Multiply>(gradOut, output, nullptr);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
int dropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return dropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue), FLOAT_TYPES);
|
|
}
|
|
|
|
int alphaDropOutFunctor(graph::Context& context, NDArray* input, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctor_, (context, input, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
|
|
}
|
|
|
|
int alphaDropOutFunctorBP(graph::Context& context, NDArray* input, NDArray* gradOut, NDArray* output, NDArray* reduceShape, int seed, double probValue, double alpha, double alpha1, double beta) {
|
|
BUILD_SINGLE_SELECTOR(context.dataType(), return alphaDropOutFunctorBP_, (context, input, gradOut, output, reduceShape, seed, probValue, alpha, alpha1, beta), FLOAT_TYPES);
|
|
}
|
|
|
|
}
|
|
}
|
|
} |