* fix pad javadoc and @see links. (#72) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * [WIP] More fixes (#73) * special tests for ConstantTadHelper/ConstantShapeHelper Signed-off-by: raver119 <raver119@gmail.com> * release methods for data buffers Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary TadPack C++/Java side (#74) Signed-off-by: raver119 <raver119@gmail.com> * Zoo model TF import test updates (#75) * argLine fix, update compression_gru comment * updated comment for xception * undid but commented argLine change * updated xlnet comment * copyright headers * - new NDArray methods like()/ulike() (#77) - fix for depthwise_conv2d_bp + special test Signed-off-by: raver119 <raver119@gmail.com> * upsampling2d fix CUDA Signed-off-by: raver119 <raver119@gmail.com> * DL4J trace logging (#79) * MLN/CG trace logging for debugging Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tiny tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * strided_slice_bp shape fn leak fix Signed-off-by: raver119 <raver119@gmail.com> * SameDiff fixes and naming (#78) * remove SDVariable inplace methods * import methods * npe fix in OpVal * removed SameDiff inplace ops from tests * Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything * quick fixes * javadoc * SDVariable eval with placeholders * use regex match * better matching * initial commit Signed-off-by: raver119 <raver119@gmail.com> * initial commit Signed-off-by: raver119 <raver119@gmail.com> * fix javadoc. (#76) * fix javadoc. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace most @see with @link s. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * 4 additional tests Signed-off-by: raver119 <raver119@gmail.com> * launch context reorganization Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext reorganization Signed-off-by: raver119 <raver119@gmail.com> * per-device LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * Various DL4J/ND4J fixes (#81) * #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Refactor NativeOps.h to export C functions * Actually export functions from NativeOps.h * Adapt the Java wrappers in ND4J generated with JavaCPP * Create C wrappers for some of the C++ classes currently used by ND4J * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * remove duplicate code in createBufferDetached. (#83) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Keras model import - updater lr fix (#84) * Keras model import - updater lr fix Signed-off-by: eraly <susan.eraly@gmail.com> * Keras model import - updater lr fix, cleanup Signed-off-by: eraly <susan.eraly@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Fix functions of OpaqueVariablesSet * thread-local buffers/affinity Signed-off-by: raver119 <raver119@gmail.com> * thread safety for LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * more of thread safety Signed-off-by: raver119 <raver119@gmail.com> * one more multi threaded test Signed-off-by: raver119 <raver119@gmail.com> * SameDiff Convolution Config validation, better output methods (#82) * Conv Config validation & tests Signed-off-by: Ryan Nett <rnett@skymind.io> * stackOutputs utility method Signed-off-by: Ryan Nett <rnett@skymind.io> * use constructor for validation, support negative kernel sizes (infered from weights) Signed-off-by: Ryan Nett <rnett@skymind.io> * better output methods Signed-off-by: Ryan Nett <rnett@skymind.io> * move output to be with fit and evaluate Signed-off-by: Ryan Nett <rnett@skymind.io> * fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * more fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * refactor duplicate code from pad methods. (#86) * refactor duplicate code from pad methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace switch with if. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes and improvements (#87) * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6488 ElementWiseVertex broadcast support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Constructors and broadcast supported it Transforms.max/min Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8054 ElementWiseVertex now supports broadcast inputs Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8057 Nd4j.create overload dtype fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7551 ND4J Shape validation fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Numpy boolean import (#91) * numpy bool type Signed-off-by: raver119 <raver119@gmail.com> * numpy bool java side Signed-off-by: raver119 <raver119@gmail.com> * remove create method with unused parameter. (#89) * remove create method with unused parameter. * removed more unused methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * removing more unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * last removal of unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * remove createSparse methods. (#92) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes (#90) * Deprecate Old*Op instances Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8063 #8054 Broadcast exceptions + cleanup inplace ops Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove bad test condition Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7993 Fix shape function issue in crop_and_resize op Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J SameDiff lambda layer fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8029 Fix for pnorm backprop math Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8038 Fix Op profiler NaN/Inf triggering + add tests (#93) Signed-off-by: AlexDBlack <blacka101@gmail.com> * createUninitializedDetached refactoring. (#94) * wip * update interface, add null implementations. * Breaking one test in a weird way. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * createUninitializedDetached refactored. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * cuda build fix for issues introduced by recent refactoring Signed-off-by: raver119 <raver119@gmail.com> * [WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io> * build fix Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI (#97) Signed-off-by: raver119 <raver119@gmail.com> * temporary stack fix Signed-off-by: raver119 <raver119@gmail.com> * round robin affinity test Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy CudaContext methods Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy ContextPool classes/methods Signed-off-by: raver119 <raver119@gmail.com> * one legacy test removed Signed-off-by: raver119 <raver119@gmail.com> * few more fields rearranged Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext++ Signed-off-by: raver119 <raver119@gmail.com> * more of OpaqueLaunchContext methods Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext -> CudaContext Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * cusolver handles Signed-off-by: raver119 <raver119@gmail.com> * typo Signed-off-by: raver119 <raver119@gmail.com> * cusolver method Signed-off-by: raver119 <raver119@gmail.com> * cusolver handle propagated Signed-off-by: raver119 <raver119@gmail.com> * blas/solver handles Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * legacy concat implementations replaced with new CustomOp Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * concat now uses way more blocks Signed-off-by: raver119 <raver119@gmail.com> * print Signed-off-by: raver119 <raver119@gmail.com> * no more triple template mmul Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bitonic sort reorganized Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * type conversions moved to generic impl Signed-off-by: raver119 <raver119@gmail.com> * cpu data types pass Signed-off-by: raver119 <raver119@gmail.com> * non_max_suppression Signed-off-by: raver119 <raver119@gmail.com> * sortByValue fix Signed-off-by: raver119 <raver119@gmail.com> * ignore all mixed datatype tests for mmul Signed-off-by: raver119 <raver119@gmail.com> * special handling of OpProfiler exceptions Signed-off-by: raver119 <raver119@gmail.com> * - one failing concat test in cpp - Nd4j.tile now uses op internally Signed-off-by: raver119 <raver119@gmail.com> * get back dtype exception for legacy arrays deserialization Signed-off-by: raver119 <raver119@gmail.com>
241 lines
12 KiB
Plaintext
241 lines
12 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
//
|
|
// @author Yurii Shyrma, created on 25.02.2018
|
|
//
|
|
|
|
|
|
#include<ops/declarable/helpers/batchnorm.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <OmpLaunchHelper.h>
|
|
#include <ConstantTadHelper.h>
|
|
#include <PointersManager.h>
|
|
|
|
namespace nd4j {
|
|
namespace ops {
|
|
namespace helpers {
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void batchnormCuda(const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets,
|
|
const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets,
|
|
const T epsilon) {
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
const auto mean = reinterpret_cast<const T*>(vMean);
|
|
const auto variance = reinterpret_cast<const T*>(vVariance);
|
|
const auto gamma = reinterpret_cast<const T*>(vGamma);
|
|
const auto beta = reinterpret_cast<const T*>(vBeta);
|
|
|
|
// maxRank = xRank = zRank, minRank = meanRank = varianceRank = gammaRank = betaRank
|
|
__shared__ Nd4jLong minLen, tadLen, totalThreads;
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
|
|
minLen = shape::length(meanShapeInfo);
|
|
tadLen = shape::length(xShapeInfo) / minLen;
|
|
}
|
|
__syncthreads();
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (uint i = tid; i < minLen; i += totalThreads) {
|
|
|
|
const auto meanOffset = shape::getIndexOffset(i, meanShapeInfo, minLen);
|
|
const auto varianceOffset = shape::getIndexOffset(i, varianceShapeInfo, minLen);
|
|
|
|
T sigmaInvGam = 1. / nd4j::math::nd4j_sqrt<T, T>(variance[varianceOffset] + epsilon);
|
|
|
|
if(gamma != nullptr)
|
|
sigmaInvGam *= gamma[shape::getIndexOffset(i, gammaShapeInfo, minLen)];
|
|
|
|
auto betaOffset = 0;
|
|
if(beta != nullptr)
|
|
betaOffset = shape::getIndexOffset(i, betaShapeInfo, minLen);
|
|
|
|
const auto xTad = x + xTadOffsets[i];
|
|
auto zTad = z + zTadOffsets[i];
|
|
|
|
for (uint j = 0; j < tadLen; ++j) {
|
|
|
|
const auto xTadOffset = shape::getIndexOffset(j, xTadShapeInfo, tadLen);
|
|
const auto zTadOffset = shape::getIndexOffset(j, zTadShapeInfo, tadLen);
|
|
|
|
zTad[zTadOffset] = (xTad[xTadOffset] - mean[meanOffset]) * sigmaInvGam;
|
|
|
|
if(beta != nullptr)
|
|
zTad[zTadOffset] += beta[betaOffset];
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void batchnormCuda2(const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int numDims, const int* dims,
|
|
const T epsilon) {
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
const auto mean = reinterpret_cast<const T*>(vMean);
|
|
const auto variance = reinterpret_cast<const T*>(vVariance);
|
|
const auto gamma = reinterpret_cast<const T*>(vGamma);
|
|
const auto beta = reinterpret_cast<const T*>(vBeta);
|
|
|
|
__shared__ int xRank, minRank; // xRank == zRank. minRank = meanRank = varianceRank = gammaRank = betaRank
|
|
__shared__ Nd4jLong xLen, totalThreads, *sharedMem; // xLen = zLen
|
|
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
|
|
xLen = shape::length(xShapeInfo);
|
|
xRank = shape::rank(xShapeInfo);
|
|
minRank = shape::rank(meanShapeInfo);
|
|
}
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * xRank;
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (uint i = tid; i < xLen; i += totalThreads) {
|
|
|
|
shape::index2coords(xRank, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), i, xLen, coords);
|
|
|
|
const auto xOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), shape::stride(const_cast<Nd4jLong*>(xShapeInfo)), coords, xRank);
|
|
const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), shape::stride(const_cast<Nd4jLong*>(zShapeInfo)), coords, xRank);
|
|
|
|
if(minRank == xRank) {
|
|
for (uint i = 0, j = 0; i < xRank; ++i) {
|
|
if(j < numDims && i != dims[j])
|
|
coords[i] = 0;
|
|
else
|
|
++j;
|
|
}
|
|
}
|
|
else // minRank = numDims = 1 in this case
|
|
coords[0] = coords[dims[0]];
|
|
|
|
const auto meanOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(meanShapeInfo)), shape::stride(const_cast<Nd4jLong*>(meanShapeInfo)), coords, minRank);
|
|
const auto varianceOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(varianceShapeInfo)), shape::stride(const_cast<Nd4jLong*>(varianceShapeInfo)), coords, minRank);
|
|
|
|
T sigmaInvGam = 1. / nd4j::math::nd4j_sqrt<T, T>(variance[varianceOffset] + epsilon);
|
|
|
|
if(gamma != nullptr) {
|
|
const auto gammaOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(gammaShapeInfo)), shape::stride(const_cast<Nd4jLong*>(gammaShapeInfo)), coords, minRank);
|
|
sigmaInvGam *= gamma[gammaOffset];
|
|
}
|
|
|
|
z[zOffset] = (x[xOffset] - mean[meanOffset]) * sigmaInvGam;
|
|
|
|
if(beta != nullptr) {
|
|
const auto betaOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(betaShapeInfo)), shape::stride(const_cast<Nd4jLong*>(betaShapeInfo)), coords, minRank);
|
|
z[zOffset] += beta[betaOffset];
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__host__ static void batchnormCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets,
|
|
const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets,
|
|
const double epsilon) {
|
|
|
|
batchnormCuda<T><<<blocksPerGrid, threadsPerBlock, 1024, *stream>>>(vx, xShapeInfo, vMean, meanShapeInfo, vVariance, varianceShapeInfo, vGamma, gammaShapeInfo, vBeta, betaShapeInfo, vz, zShapeInfo, xTadShapeInfo, xTadOffsets, zTadShapeInfo, zTadOffsets, static_cast<T>(epsilon));
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__host__ static void batchnormCudaLauncher2(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream,
|
|
const void* vx, const Nd4jLong* xShapeInfo,
|
|
const void* vMean, const Nd4jLong* meanShapeInfo,
|
|
const void* vVariance, const Nd4jLong* varianceShapeInfo,
|
|
const void* vGamma, const Nd4jLong* gammaShapeInfo,
|
|
const void* vBeta, const Nd4jLong* betaShapeInfo,
|
|
void* vz, const Nd4jLong* zShapeInfo,
|
|
const int numDims, const int* dims,
|
|
const double epsilon) {
|
|
|
|
batchnormCuda2<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, vMean, meanShapeInfo, vVariance, varianceShapeInfo, vGamma, gammaShapeInfo, vBeta, betaShapeInfo, vz, zShapeInfo, numDims, dims, static_cast<T>(epsilon));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void batchnorm(const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* beta, NDArray* output, const std::vector<int>& axes, const double epsilon) {
|
|
|
|
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(input->rankOf(), axes);
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimsToExclude);
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimsToExclude);
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 2;
|
|
const int blocksPerGrid = (mean->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
|
|
PointersManager manager(input->getContext(), "batchnorm");
|
|
|
|
NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
BUILD_SINGLE_SELECTOR(input->dataType(), batchnormCudaLauncher, (blocksPerGrid, threadsPerBlock, input->getContext()->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), mean->getSpecialBuffer(), mean->getSpecialShapeInfo(), variance->getSpecialBuffer(), variance->getSpecialShapeInfo(), gamma ? gamma->getSpecialBuffer() : nullptr, gamma ? gamma->getSpecialShapeInfo() : nullptr, beta ? beta->getSpecialBuffer() : nullptr, beta ? beta->getSpecialShapeInfo() : nullptr, output->specialBuffer(), output->specialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), epsilon), FLOAT_TYPES);
|
|
NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
|
|
manager.synchronize();
|
|
|
|
|
|
// const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
|
// const int blocksPerGrid = (input->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
// const int sharedMem = sizeof(Nd4jLong) * threadsPerBlock * input->rankOf() + 128;
|
|
|
|
// PointersManager manager(input->getContext(), "batchnorm");
|
|
|
|
// const int* dims = reinterpret_cast<int*>(manager.replicatePointer(axes.data(), axes.size() * sizeof(int)));
|
|
|
|
// NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
// BUILD_SINGLE_SELECTOR(input->dataType(), batchnormCudaLauncher2, (blocksPerGrid, threadsPerBlock, sharedMem, input->getContext()->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), mean->getSpecialBuffer(), mean->getSpecialShapeInfo(), variance->getSpecialBuffer(), variance->getSpecialShapeInfo(), gamma ? gamma->getSpecialBuffer() : nullptr, gamma ? gamma->getSpecialShapeInfo() : nullptr, beta ? beta->getSpecialBuffer() : nullptr, beta ? beta->getSpecialShapeInfo() : nullptr, output->specialBuffer(), output->specialShapeInfo(), axes.size(), dims, epsilon), FLOAT_TYPES);
|
|
// NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta});
|
|
|
|
// manager.synchronize();
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
}
|
|
|