cavis/libnd4j/include/loops/cuda/indexreduce.cu
raver119 53ca9a76e8
[WIP] multi-device support (#80)
* fix pad javadoc and @see links. (#72)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* [WIP] More fixes (#73)

* special tests for ConstantTadHelper/ConstantShapeHelper

Signed-off-by: raver119 <raver119@gmail.com>

* release methods for data buffers

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary buffer Java side

Signed-off-by: raver119 <raver119@gmail.com>

* delete temporary TadPack C++/Java side (#74)

Signed-off-by: raver119 <raver119@gmail.com>

* Zoo model TF import test updates (#75)

* argLine fix, update compression_gru comment

* updated comment for xception

* undid but commented argLine change

* updated xlnet comment

* copyright headers

* - new NDArray methods like()/ulike() (#77)

- fix for depthwise_conv2d_bp + special test

Signed-off-by: raver119 <raver119@gmail.com>

* upsampling2d fix CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* DL4J trace logging (#79)

* MLN/CG trace logging for debugging

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Tiny tweak

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* strided_slice_bp shape fn leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff fixes and naming (#78)

* remove SDVariable inplace methods

* import methods

* npe fix in OpVal

* removed SameDiff inplace ops from tests

* Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything

* quick fixes

* javadoc

* SDVariable eval with placeholders

* use regex match

* better matching

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* fix javadoc. (#76)

* fix javadoc.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace most @see with @link s.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* 4 additional tests

Signed-off-by: raver119 <raver119@gmail.com>

* launch context reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext reorganization

Signed-off-by: raver119 <raver119@gmail.com>

* per-device LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* Various DL4J/ND4J fixes (#81)

* #7954 Force refresh of UI when switching tabs on overview page

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8017 Concurrent modification exception (synchronize) fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8033 Don't initialize updater in middle of writing memory crash dump

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8208 Fix shape checks for ND4J int[] creator methods

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6385 #7992 Keras import naming fixes + cleanup

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8016 Upsampling3D - add NDHWC format support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Refactor NativeOps.h to export C functions

* Actually export functions from NativeOps.h

* Adapt the Java wrappers in ND4J generated with JavaCPP

* Create C wrappers for some of the C++ classes currently used by ND4J

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* remove duplicate code in createBufferDetached. (#83)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Keras model import - updater lr fix (#84)

* Keras model import - updater lr fix

Signed-off-by: eraly <susan.eraly@gmail.com>

* Keras model import - updater lr fix, cleanup

Signed-off-by: eraly <susan.eraly@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* ContextBuffers as separate entity

Signed-off-by: raver119 <raver119@gmail.com>

* Fix functions of OpaqueVariablesSet

* thread-local buffers/affinity

Signed-off-by: raver119 <raver119@gmail.com>

* thread safety for LaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* more of thread safety

Signed-off-by: raver119 <raver119@gmail.com>

* one more multi threaded test

Signed-off-by: raver119 <raver119@gmail.com>

* SameDiff Convolution Config validation, better output methods (#82)

* Conv Config validation & tests

Signed-off-by: Ryan Nett <rnett@skymind.io>

* stackOutputs utility method

Signed-off-by: Ryan Nett <rnett@skymind.io>

* use constructor for validation, support negative kernel sizes (infered from weights)

Signed-off-by: Ryan Nett <rnett@skymind.io>

* better output methods

Signed-off-by: Ryan Nett <rnett@skymind.io>

* move output to be with fit and evaluate

Signed-off-by: Ryan Nett <rnett@skymind.io>

* fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* more fixes

Signed-off-by: Ryan Nett <rnett@skymind.io>

* refactor duplicate code from pad methods. (#86)

* refactor duplicate code from pad methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* replace switch with if.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes and improvements (#87)

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Reshape and reallocate - small fixes

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #6488 ElementWiseVertex broadcast support

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Constructors and broadcast supported it Transforms.max/min

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8054 ElementWiseVertex now supports broadcast inputs

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8057 Nd4j.create overload dtype fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7551 ND4J Shape validation fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* [WIP] Numpy boolean import (#91)

* numpy bool type

Signed-off-by: raver119 <raver119@gmail.com>

* numpy bool java side

Signed-off-by: raver119 <raver119@gmail.com>

* remove create method with unused parameter. (#89)

* remove create method with unused parameter.

* removed more unused methods.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* removing more unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* last removal of unused code.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* remove createSparse methods. (#92)

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* Various ND4J/DL4J fixes (#90)

* Deprecate Old*Op instances

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8063 #8054 Broadcast exceptions + cleanup inplace ops

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Small fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* Remove bad test condition

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #7993 Fix shape function issue in crop_and_resize op

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* DL4J SameDiff lambda layer fix

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8029 Fix for pnorm backprop math

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* #8038 Fix Op profiler NaN/Inf triggering + add tests (#93)

Signed-off-by: AlexDBlack <blacka101@gmail.com>

* createUninitializedDetached refactoring. (#94)

* wip

* update interface, add null implementations.

* Breaking one test in a weird way.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* createUninitializedDetached refactored.

Signed-off-by: Robert Altena <Rob@Ra-ai.com>

* cuda build fix for issues introduced by recent refactoring

Signed-off-by: raver119 <raver119@gmail.com>

* [WIP] More of CUDA (#95)

* initial commit

Signed-off-by: raver119 <raver119@gmail.com>

* Implementation of hashcode cuda helper. Working edition.

* Fixed parallel test input arangements.

* Fixed tests for hashcode op.

* Fixed shape calculation for image:crop_and_resize op and test.

* NativeOps tests. Initial test suite.

* Added tests for indexReduce methods.

* Added test on execBroadcast with NDArray as dimensions.

* Added test on execBroadcastBool with NDArray as dimensions.

* Added tests on execPairwiseTransform and execPairwiseTransofrmBool.

* Added tests for execReduce with scalar results.

* Added reduce tests for non-empty dims array.

* Added tests for reduce3.

* Added tests for execScalar.

* Added tests for execSummaryStats.

* - provide cpu/cuda code for batch_to_space
- testing it

Signed-off-by: Yurii <yurii@skymind.io>

* - remove old test for batch_to_space (had wrong format and numbers were not checked)

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed complilation errors with test.

* Added test for execTransformFloat.

* Added test for execTransformSame.

* Added test for execTransformBool.

* Added test for execTransformStrict.

* Added tests for execScalar/execScalarBool with TADs.

* Added test for flatten.

* - provide cpu/cuda code for space_to_Batch operaion

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for concat.

* comment unnecessary stuff in s_t_b

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for specialConcat.

* Added tests for memcpy/set routines.

* Fixed pullRow cuda test.

* Added pullRow test.

* Added average test.

* - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...)

Signed-off-by: Yurii <yurii@skymind.io>

* - debugging and fixing cuda tests in JavaInteropTests file

Signed-off-by: Yurii <yurii@skymind.io>

* - correct some tests

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for shuffle.

* Fixed ops declarations.

* Restored omp and added shuffle test.

* Added convertTypes test.

* Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps.

* Added sort tests.

* Added tests for execCustomOp.

* - further debuging and fixing tests terminated with crash

Signed-off-by: Yurii <yurii@skymind.io>

* Added tests for calculateOutputShapes.

* Addded Benchmarks test.

* Commented benchmark tests.

* change assertion

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for apply_sgd op. Added cpu helper for that op.

* Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps.

* Added test for assign broadcastable.

* Added tests for assign_bp op.

* Added tests for axpy op.

* - assign/execScalar/execTransformAny signature change
- minor test fix

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed axpy op.

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* - fix tests for nativeOps::concat

Signed-off-by: Yurii <yurii@skymind.io>

* sequential transform/scalar

Signed-off-by: raver119 <raver119@gmail.com>

* allow nested parallelism

Signed-off-by: raver119 <raver119@gmail.com>

* assign_bp leak fix

Signed-off-by: raver119 <raver119@gmail.com>

* block setRNG fix

Signed-off-by: raver119 <raver119@gmail.com>

* enable parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* enable nested parallelism by default

Signed-off-by: raver119 <raver119@gmail.com>

* Added cuda implementation for row_count helper.

* Added implementation for tnse gains op helper.

* - take into account possible situations when input arrays are empty in reduce_ cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces.

* Added kernel for tsne/symmetrized op heleper.

* Implementation of tsne/symmetrized op cuda helper. Working edition.

* Eliminated waste printfs.

* Added test for broadcastgradientargs op.

* host-only fallback for empty reduce float

Signed-off-by: raver119 <raver119@gmail.com>

* - some tests fixes

Signed-off-by: Yurii <yurii@skymind.io>

* - correct the rest of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* - further correction of reduce_ stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Added test for Cbow op. Also added cuda implementation for cbow helpers.

* - improve code of stack operation for scalar case

Signed-off-by: Yurii <yurii@skymind.io>

* - provide cuda kernel for gatherND operation

Signed-off-by: Yurii <yurii@skymind.io>

* Implementation of cbow helpers with cuda kernels.

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* minor tests tweaks

Signed-off-by: raver119 <raver119@gmail.com>

* - further correction of cuda stuff

Signed-off-by: Yurii <yurii@skymind.io>

* Implementatation of cbow op helper with cuda kernels. Working edition.

* Skip random testing for cudablas case.

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for ELU and ELU_BP ops.

* Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops.

* Added tests for neq_scalar.

* Added test for noop.

* - further work on clipbynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* - get rid of concat op call, use instead direct concat helper call

Signed-off-by: Yurii <yurii@skymind.io>

* lstmBlockCell context fix

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for lrelu and lrelu_bp.

* Added tests for selu and selu_bp.

* Fixed lrelu derivative helpers.

* - some corrections in lstm

Signed-off-by: Yurii <yurii@skymind.io>

* operator * result shape fix

Signed-off-by: raver119 <raver119@gmail.com>

* - correct typo in lstmCell

Signed-off-by: Yurii <yurii@skymind.io>

* few tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* CUDA inverse broadcast bool fix

Signed-off-by: raver119 <raver119@gmail.com>

* disable MMAP test for CUDA

Signed-off-by: raver119 <raver119@gmail.com>

* BooleanOp syncToDevice

Signed-off-by: raver119 <raver119@gmail.com>

* meh

Signed-off-by: raver119 <raver119@gmail.com>

* additional data types for im2col/col2im

Signed-off-by: raver119 <raver119@gmail.com>

* Added test for firas_sparse op.

* one more RandomBuffer test excluded

Signed-off-by: raver119 <raver119@gmail.com>

* Added tests for flatten op.

* Added test for Floor op.

* bunch of tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* mmulDot tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Implemented floordiv_bp op and tests.

* Fixed scalar case with cuda implementation for bds.

* - work on cuda kernel for clip_by_norm backprop op is completed

Signed-off-by: Yurii <yurii@skymind.io>

* Eliminate cbow crach.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Eliminated abortion with batched nlp test.

* more tests fixed

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed shared flag initializing.

* disabled bunch of cpu workspaces tests

Signed-off-by: raver119 <raver119@gmail.com>

* scalar operators fix: missing registerSpecialUse call

Signed-off-by: raver119 <raver119@gmail.com>

* Fixed logdet for cuda and tests.

* - correct clipBynorm_bp

Signed-off-by: Yurii <yurii@skymind.io>

* Fixed crop_and_resize shape datatype.

* - correct some mmul tests

Signed-off-by: Yurii <yurii@skymind.io>

* build fix

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI

Signed-off-by: raver119 <raver119@gmail.com>

* exclude two methods for JNI (#97)

Signed-off-by: raver119 <raver119@gmail.com>

* temporary stack fix

Signed-off-by: raver119 <raver119@gmail.com>

* round robin affinity test

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy CudaContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* get rid of legacy ContextPool classes/methods

Signed-off-by: raver119 <raver119@gmail.com>

* one legacy test removed

Signed-off-by: raver119 <raver119@gmail.com>

* few more fields rearranged

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext

Signed-off-by: raver119 <raver119@gmail.com>

* OpaqueLaunchContext++

Signed-off-by: raver119 <raver119@gmail.com>

* more of OpaqueLaunchContext methods

Signed-off-by: raver119 <raver119@gmail.com>

* LaunchContext -> CudaContext

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* AffinityManger changes

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handles

Signed-off-by: raver119 <raver119@gmail.com>

* typo

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver method

Signed-off-by: raver119 <raver119@gmail.com>

* cusolver handle propagated

Signed-off-by: raver119 <raver119@gmail.com>

* blas/solver handles

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* legacy concat implementations replaced with new CustomOp

Signed-off-by: raver119 <raver119@gmail.com>

* one more test

Signed-off-by: raver119 <raver119@gmail.com>

* concat now uses way more blocks

Signed-off-by: raver119 <raver119@gmail.com>

* print

Signed-off-by: raver119 <raver119@gmail.com>

* no more triple template mmul

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of kernels have dtypes reconsidered

Signed-off-by: raver119 <raver119@gmail.com>

* bitonic sort reorganized

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* bunch of cpu stuff removed from cuda scope

Signed-off-by: raver119 <raver119@gmail.com>

* type conversions moved to generic impl

Signed-off-by: raver119 <raver119@gmail.com>

* cpu data types pass

Signed-off-by: raver119 <raver119@gmail.com>

* non_max_suppression

Signed-off-by: raver119 <raver119@gmail.com>

* sortByValue fix

Signed-off-by: raver119 <raver119@gmail.com>

* ignore all mixed datatype tests for mmul

Signed-off-by: raver119 <raver119@gmail.com>

* special handling of OpProfiler exceptions

Signed-off-by: raver119 <raver119@gmail.com>

* - one failing concat test in cpp
- Nd4j.tile now uses op internally

Signed-off-by: raver119 <raver119@gmail.com>

* get back dtype exception for legacy arrays deserialization

Signed-off-by: raver119 <raver119@gmail.com>
2019-08-14 16:52:34 +03:00

396 lines
17 KiB
Plaintext

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// Created by raver on 4/9/2018.
//
#include <Environment.h>
#include "../indexreduce.h"
#include <op_boilerplate.h>
#include <helpers/DebugHelper.h>
#include <types/types.h>
#include "../legacy_ops.h"
using namespace simdOps;
template <typename T>
static __global__ void simpleIndexReduceGeneric(const int op,
void *dx,
Nd4jLong *xShapeInfo, int xRank,
void *extraParams,
Nd4jLong *result,
Nd4jLong *resultShapeInfo, int zRank,
int *dimension,
int dimensionLength,
int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
functions::indexreduce::IndexReduce<T>::transform(op,dx,xShapeInfo,extraParams,result,resultShapeInfo,dimension,dimensionLength,postProcessOrNot,allocationBuffer,reductionBuffer,tadOnlyShapeInfo,tadOffsets);
}
namespace functions {
namespace indexreduce {
template <typename T>
_CUDA_H void IndexReduce<T>::executeIndexReduceScalar(dim3 launchDims, cudaStream_t *stream,
const int opNum,
void *dx, Nd4jLong *xShapeInfo,
int xRank,
void *extraParams,
Nd4jLong *result, Nd4jLong *resultShapeInfo,
int zRank,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationBuffer, void *reductionBuffer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
simpleIndexReduceGeneric<T><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(opNum,
dx, xShapeInfo, xRank,
extraParams,
result, resultShapeInfo, 0,
nullptr, 0,
1,
allocationBuffer, reductionBuffer,
tadOnlyShapeInfo, tadOffsets);
nd4j::DebugHelper::checkErrorCode(stream, "execIndexReduceScalar(...) failed");
}
template <typename T>
_CUDA_H void IndexReduce<T>::executeIndexReduce(dim3 launchDims, cudaStream_t *stream, const int opNum, void *dx, Nd4jLong *xShapeInfo, int xRank, void *extraParams, Nd4jLong *result, Nd4jLong *resultShapeInfo, int zRank, int *dimension, int dimensionLength, int postProcessOrNot, int *allocationBuffer, void *reductionBuffer, Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets) {
simpleIndexReduceGeneric<T><<<launchDims.x,launchDims.y,launchDims.z, *stream>>>(
opNum,
dx,
xShapeInfo, xRank,
extraParams,
result,
resultShapeInfo, zRank,
dimension,
dimensionLength,
1, allocationBuffer, reductionBuffer, tadOnlyShapeInfo, tadOffsets);
DEBUG_KERNEL(stream, opNum);
}
// This is the un-specialized struct. Note that we prevent instantiation of this
// struct by putting an undefined symbol in the function body so it won't compile.
template<typename T>
struct SharedIndexValue {
// Ensure that we won't compile any un-specialized types
__device__ T * getPointer() {
extern __device__ void error(void);
error();
return 0;
}
};
// Following are the specializations for the following types.
// int, uint, char, uchar, short, ushort, long long, ulong long, bool, float, and double
// One could also specialize it for user-defined types.
template<>
struct SharedIndexValue<float> {
__device__ IndexValue<float> * getPointer() {
extern __shared__ IndexValue<float> s_int2[];
return s_int2;
}
};
// Following are the specializations for the following types.
// int, uint, char, uchar, short, ushort, long long, ulong long, bool, float, and double
// One could also specialize it for user-defined types.
template<>
struct SharedIndexValue<double> {
__device__ IndexValue<double> * getPointer() {
extern __shared__ IndexValue<double> s_int6[];
return s_int6;
}
};
template <typename T>
template <typename OpType>
__device__ void IndexReduce<T>::aggregatePartials(IndexValue<T> **sPartialsRef, Nd4jLong tid, Nd4jLong numElements, void *vextraParams) {
// start the shared memory loop on the next power of 2 less
// than the block size. If block size is not a power of 2,
// accumulate the intermediate sums in the remainder range.
auto extraParams = static_cast<T*>(vextraParams);
IndexValue<T> *sPartials = *sPartialsRef;
Nd4jLong floorPow2 = blockDim.x;
if (floorPow2 & (floorPow2 - 1)) {
while ( floorPow2 & (floorPow2 - 1) ) {
floorPow2 &= floorPow2 - 1;
}
if (tid >= floorPow2) {
IndexValue<T> prev = sPartials[tid - floorPow2];
IndexValue<T> curr = sPartials[tid];
sPartials[tid - floorPow2] = OpType::update(prev,curr,extraParams);
}
__syncthreads();
}
for (int activeThreads = floorPow2 >> 1;activeThreads; activeThreads >>= 1) {
if (tid < activeThreads && tid + activeThreads < numElements) {
IndexValue<T> curr = sPartials[tid];
IndexValue<T> next = sPartials[tid + activeThreads];
sPartials[tid] = OpType::update(curr,next,extraParams);
}
__syncthreads();
}
}
template <typename X>
__device__ void IndexReduce<X>::transform(
const int opNum,
void *x,
Nd4jLong *xShapeInfo,
void *extraParams,
Nd4jLong *result,
Nd4jLong *resultShapeInfo,
int *dimension,
int dimensionLength,
int postProcessOrNot,
int *allocationBuffer,
void *reductionBuffer,
Nd4jLong *tadShapeInfo,
Nd4jLong *tadOffset) {
DISPATCH_BY_OPNUM_T(transform, PARAMS(x, xShapeInfo, extraParams, result, resultShapeInfo, dimension, dimensionLength, postProcessOrNot, allocationBuffer, reductionBuffer, tadShapeInfo, tadOffset), INDEX_REDUCE_OPS);
}
template <typename T>
template <typename OpType>
__device__ void IndexReduce<T>::transform(void *vdx, Nd4jLong *xShapeInfo,
void *vextraParams,
Nd4jLong *result, Nd4jLong *resultShapeInfo,
int *dimension, int dimensionLength,
int postProcessOrNot,
int *allocationBuffer, void *vreductionBuffer,
Nd4jLong *tadOnlyShapeInfo, Nd4jLong *tadOffsets){
/**int
* Gpu information for the problem
*/
auto dx = static_cast<T*>(vdx);
auto extraParams = static_cast<T*>(vextraParams);
auto reductionBuffer = static_cast<T*>(vreductionBuffer);
auto order = shape::order(xShapeInfo);
int tid = blockIdx.x * blockDim.x + threadIdx.x;
__shared__ volatile int resultScalar;
//shared memory space for storing intermediate results
__shared__ IndexValue<T>* sPartials;
if(threadIdx.x == 0) {
extern __shared__ unsigned char shmem[];
sPartials = reinterpret_cast<IndexValue<T>*>(shmem);
}
__syncthreads();
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
//length for the tad
__shared__ volatile Nd4jLong xLength;
__shared__ volatile Nd4jLong resultLength;
//only compute the tad indexes once
IndexValue <T> reduction = OpType::startingIndexValue(dx);
if (threadIdx.x == 0) {
if (resultShapeInfo != nullptr)
resultLength = shape::length(resultShapeInfo);
else resultLength = 1;
if (dimensionLength == 1) {
if (resultLength == 1 && (dimension == nullptr || dimension[0] == MAX_DIMENSION))
resultScalar = 1;
else
resultScalar = 0;
}
else
resultScalar = 0;
if (resultLength == 1)
resultScalar = 1;
xLength = shape::length(xShapeInfo);
}
__syncthreads();
if (!resultScalar) {
__shared__ Nd4jLong tadLength;
__shared__ int tadEWS;
__shared__ int numTads;
if (threadIdx.x == 0) {
tadLength = shape::length(tadOnlyShapeInfo);
tadEWS = shape::elementWiseStride(tadOnlyShapeInfo);
numTads = shape::length(xShapeInfo) / tadLength;
}
__syncthreads();
if (dimensionLength > 1 || tadEWS < 1) {
for (int r = blockIdx.x; r < numTads; r += gridDim.x) {
auto tadOffsetForBlock = tadOffsets[r];
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
for(int i = threadIdx.x;i < tadLength; i += blockDim.x) {
auto xOffset = tadOffsetForBlock + shape::getIndexOffset(i, tadOnlyShapeInfo, tadLength);
IndexValue<T> comp {dx[xOffset], i};
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], comp, extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength),extraParams);
__syncthreads();
if (threadIdx.x == 0) {
result[r] = sPartials[threadIdx.x].index;
}
}
} else {
for(int i = blockIdx.x; i < numTads; i+= gridDim.x) {
Nd4jLong tadOffsetForBlock = tadOffsets[i];
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
for (int x = threadIdx.x; x < tadLength; x+= blockDim.x) {
IndexValue<T> comp {dx[tadOffsetForBlock + x * tadEWS], x};
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], comp, extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, tadLength),extraParams);
__syncthreads();
if (threadIdx.x == 0) {
result[i] = sPartials[threadIdx.x].index; //postProcess(sPartials[0],tadLength ,extraParams);
}
}
}
} else {
auto n = shape::length(xShapeInfo);
auto xElementWiseStride = shape::elementWiseStride(xShapeInfo);
if(xElementWiseStride >= 1 && order == 'c') {
for(Nd4jLong i = tid;i < n; i += (blockDim.x * gridDim.x)) {
IndexValue <T> indexVal = {dx[i * xElementWiseStride], i};
reduction = OpType::update(reduction, indexVal, extraParams);
}
} else {
for(Nd4jLong i = tid;i < n; i += blockDim.x * gridDim.x) {
auto offset = shape::getIndexOffset(i, xShapeInfo, n);
IndexValue <T> indexVal = {dx[offset], i};
reduction = OpType::update(reduction, indexVal, extraParams);
}
}
sPartials[threadIdx.x] = reduction;
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(blockDim.x, (int) n),extraParams);
__syncthreads();
if (gridDim.x > 1) {
__shared__ bool amLast;
unsigned int *tc = (unsigned int *) reductionBuffer;
tid = threadIdx.x;
if (threadIdx.x == 0) {
auto pBuffer = reinterpret_cast<IndexValue<T> *>(reductionBuffer);
pBuffer[blockIdx.x] = {sPartials[0].value, sPartials[0].index};
}
__threadfence();
__syncthreads();
if (tid==0) {
unsigned int ticket = atomicInc(&tc[16384], gridDim.x);
amLast = (ticket == gridDim.x-1);
}
__syncthreads();
if (amLast) {
tc[16384] = 0;
IndexValue<T> *pBuffer = (IndexValue<T> *) reductionBuffer;
sPartials[threadIdx.x] = OpType::startingIndexValue(dx);
for (Nd4jLong i = threadIdx.x; i < gridDim.x; i += blockDim.x) {
sPartials[threadIdx.x] = OpType::update(sPartials[threadIdx.x], pBuffer[i], extraParams);
}
__syncthreads();
aggregatePartials<OpType>(&sPartials, threadIdx.x, nd4j::math::nd4j_min<int>(gridDim.x, blockDim.x),extraParams);
__syncthreads();
if (tid == 0) {
result[0] = sPartials[0].index;
}
}
} else {
if (tid == 0) {
auto tc = reinterpret_cast<unsigned int *>(reductionBuffer);
tc[16384] = 0;
result[0] = sPartials[0].index;
}
}
}
}
template <typename T>
Nd4jLong IndexReduce<T>::execScalar(const int opNum, void *x, Nd4jLong *xShapeInfo, void *extraParams) {
return 0;
}
template <typename T>
void IndexReduce<T>::exec(const int opNum, void *x, Nd4jLong *xShapeInfo, void *extraParams, Nd4jLong *result, Nd4jLong *resultShapeInfoBuffer, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffset) {
}
template <typename T>
template<typename OpType>
Nd4jLong IndexReduce<T>:: execScalar(void *x, Nd4jLong *xShapeInfo, void *extraParams) {
return 0;
}
template <typename T>
template<typename OpType>
_CUDA_H void IndexReduce<T>::exec(void *x, Nd4jLong *xShapeInfo, void *extraParams, Nd4jLong *result, Nd4jLong *resultShapeInfoBuffer, int *dimension, int dimensionLength, Nd4jLong *tadShapeInfo, Nd4jLong *tadOffset) {
}
BUILD_SINGLE_TEMPLATE(template class ND4J_EXPORT IndexReduce, , LIBND4J_TYPES);
}
}