cavis/libnd4j/include/helpers/ShapeUtils.h
Alex Black 68ea5f3688
Dev branch merge: dev_20190606 (#7904)
* correct logsoftmax looss (#2)

* Small SameDiff listener fix (#4)

* Various fixes (#6)

* #7839 Fix for asXMatrix and tests

* #7866 EmbeddingSequenceLayer dtype fix + test

* #7856 SameDiff save/load stream methods

* #7859 RegressionEvaluation rank 4 fix + tests + axis configuration

* EvaluationBinary 3d/4d

* More evaluation 3d/4d tests

* #7847 Evaluation empty checks

* Small test ifx

* #7848 Fix median edge case

* Improve DL4J samediff layer tests

* [WIP] FastText wrapper implemented (#8)

* FastText implemented

* Some fixes

* Fix shapes for wordsNearest

* Validation of input vectors

* Fixes

* Fixed test

* Thread tagged

* Some tweaks

* setContextClassLoader for DeallocatorServiceThread

* Numpy format tests (#1)

* Various fixes (#11)

* #7852 SameDiff gather fix

* #7892 SameDiff placeholder to constant conversion

* #7890 validate input rank for MLN/CG init methods

* Fix broken permute shape calculation

* Permute and gather fixes

* Tests

* #7850 LogSumExp fix + test

* Handful of test fixes

* Empty arrays with non-scalar shapes (#10)

* minor rearrangements for lambdas

* empty tensors with non-scalar shapes

* numpy empty tensors with non-scalar shapes

* few more empty tweaks

* Small fixes

* conv3d signature update

* micro fix in batchnorm mkldnn

* Import fixes

* Fix

* MKL-DNN update

* Small fill fix

* fill with empty input + test

* Fixes

* Small error improvement

* Fix

* one special test

* couple of fixes for lstm

* Rewrite TFGraphMapper.getNDArrayFromTensor to be maintainable and less error prone

* Fixes

* FP16

* Unsigned

* BFloat16

* Fill op - empty tweaks

* - couple of fixes for empty arrays construction
- stack updated

* strided slice fix

* one transform test

* provide method for reducing shapeInfo in case of input array is empty

* Fixed reduceAlongDimensions to use empty input properly.

* couple of broadcast tests

* couple of tests broadcast tests + tweak to make them pass

* add check of non-empty to methods producing sub-arrays

* Fixed reshapeC with zeros in shape.

* complete empty check in reduce_... legacy ops

* Concat and cumsum/prod

* Tweak to empty shape inference on import

* add empty check to the rest of reduce legacy ops

* one more test

* correct typo in evalReduceShapeInfoEmpty

* Added tests for reduce_* ops to tests with zero shapes.

* few more tests for empty reductions

* Fixed strided_slice op with empty case and tests.

* one more empty reduction test

* Fixed strided_slice test.

* add empty check to NDArray::reshapei

* infOrMax

* empty min/max with infinity tests

* made unstack working correctly with empty arrays

* few IndexReduce tests + tweaks for empty shapes

* add test for empty concat

* few tests fixed

* Validation fix for reductions on empty shapes

* Reverse fix

* Reduction shape calc fixes

* SameDiff.generateOutputVariable: don't use shape function to determine number of outputs

* Range fix

* - NDArray constructor updated for scalars/empty arrays
- few tests fixed

* More fixes

* Empty creator fixes

* concat fix

* concat fix

* TF import tests: allow 'both all NaN' and 'both all inf' to pass

* Slice, zero fraction, and reshape fixes

* transpose, gather

* Zero fraction

* scalar cast fix

* Empty reduction axis support

* few more tests fixed

* Fixed input checks conforming with TF for concat op and tests.

* few tests fixed

* matmul scalar shape fix

* Fixed checkout for data type and scalarity with concat to allow non-empty scalars with vector concats.

* broadcast bool fix

* few more tests

* few more tests

* correct evalReduceShapeInfoEmpty

* argmax/argmin + tests

* one more empty edge case + one more test

* argmax/argmin/realdiv_bp tweaks

* empty reshape test + fix

* Helper fixes

* Small fixes

* Gather test fix

* Gather test fix

* Small fixes

* reduce scalar zero values

* scalar mean workaround

* Remove debug code

* along dim mean workaround

* one more test

* - equalsTo() tweak for empty arrays
- one more test

* broadcast tweaks
2019-06-15 21:34:34 +10:00

195 lines
11 KiB
C++

/*******************************************************************************
* Copyright (c) 2015-2018 Skymind, Inc.
*
* This program and the accompanying materials are made available under the
* terms of the Apache License, Version 2.0 which is available at
* https://www.apache.org/licenses/LICENSE-2.0.
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations
* under the License.
*
* SPDX-License-Identifier: Apache-2.0
******************************************************************************/
//
// @author iuriish@yahoo.com
//
#ifndef LIBND4J_SHAPEUTILS_H
#define LIBND4J_SHAPEUTILS_H
#include <vector>
#include <NDArray.h>
namespace nd4j {
class ShapeUtils {
public:
// evaluate shape for array resulting from tensorDot operation, also evaluate shapes and permutation dimensions for transposition of two input arrays
static std::vector<Nd4jLong> evalShapeForTensorDot(const Nd4jLong* aShapeInfo, const Nd4jLong* bShapeInfo, std::vector<int> axesA, std::vector<int> axesB, std::vector<int>& permutAt, std::vector<int>& permutBt, std::vector<Nd4jLong>& shapeAt, std::vector<Nd4jLong>& shapeBt);
static std::vector<Nd4jLong> evalShapeForTensorDot(const NDArray* a, const NDArray* b, const std::vector<int>& axesA, const std::vector<int>& axesB, std::vector<int>& permutAt, std::vector<int>& permutBt, std::vector<Nd4jLong>& shapeAt, std::vector<Nd4jLong>& shapeBt);
// evaluate resulting shape after reduce operation
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const NDArray& arr, const nd4j::DataType dataType, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const Nd4jLong* shapeInfo, const nd4j::DataType dataType, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const NDArray& arr, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
static Nd4jLong* evalReduceShapeInfo(const char order, std::vector<int>& dimensions, const Nd4jLong* shapeInfo, const bool keepDims = false, const bool supportOldShapes = false, nd4j::memory::Workspace* workspace = nullptr);
/**
* evaluate output shape for reduce operation when input shape is empty
* behavior is analogous to tf
*/
static Nd4jLong* evalReduceShapeInfoEmpty(const char order, std::vector<int>& dimensions, const Nd4jLong *shapeInfo, const nd4j::DataType dataType, const bool keepDims, nd4j::memory::Workspace* workspace);
// evaluate shape for array which is result of repeat operation applied to arr
static std::vector<Nd4jLong> evalRepeatShape(int dimension, const std::vector<Nd4jLong>& repeats, const NDArray& arr);
// evaluate shapeInfo of permuted array
static Nd4jLong* evalPermShapeInfo(const int* dimensions, const int rank, const NDArray& arr, nd4j::memory::Workspace* workspace);
static Nd4jLong* evalPermShapeInfo(const Nd4jLong* dimensions, const int rank, const NDArray& arr, nd4j::memory::Workspace* workspace);
// evaluate shapeInfo of transposed array
static Nd4jLong* evalTranspShapeInfo(const NDArray& arr, nd4j::memory::Workspace* workspace);
static bool copyVectorPart(std::vector<int>& target, std::vector<int>& source, int rank, int offset);
// return new (shorter) sorted dimensions array without dimensions that are present in input vector
static std::vector<int> evalDimsToExclude(const int rank, const int dimsLen, const int* dimensions);
static std::vector<int> evalDimsToExclude(const int rank, const std::vector<int>& dimensions);
// check whether 2 arrays have mutually broadcastable shapes
// shape comparison starts from the end
static bool areShapesBroadcastable(const NDArray &arr1, const NDArray &arr2);
static bool areShapesBroadcastable(Nd4jLong* shapeX, Nd4jLong* shapeY);
static bool areShapesBroadcastable(const std::vector<Nd4jLong>& shape1, const std::vector<Nd4jLong>& shape2);
// check the possibility of broadcast operation, if true then return shapeInfo of resulting array
// if evalMinMax == false then array with larger rank has to be passed as first argument
static bool evalBroadcastShapeInfo(const NDArray& max, const NDArray& min, const bool evalMinMax, Nd4jLong*& resultShapeInfo, nd4j::memory::Workspace* workspace);
static bool evalBroadcastShapeInfo(Nd4jLong *max, Nd4jLong *min, const bool evalMinMax, Nd4jLong*& resultShapeInfo, nd4j::memory::Workspace* workspace);
// evaluate sorted vector of max axes to create tads along in case of simple broadcast operation
// if simple broadcast is not possible then empty vector is returned
// PLEASE NOTE: condition (rank_max >= rank_min) should be satisfied !
static std::vector<int> tadAxesForSimpleBroadcast(const NDArray& max, const NDArray& min);
// check the possibility of broadcast operation for set of arrays, if true then return resulting broadcasted shapeInfo
static bool evalCommonBroadcastShapeInfo(const std::vector<const NDArray*>& arrays, Nd4jLong*& resultShapeInfo, memory::Workspace* workspace = nullptr);
// return sorted vector of dimensions of array with larger dimensions along which two input arrays have same shape
static std::vector<int> getDimsWithSameShape(const NDArray& max, const NDArray& min);
// evaluate shapeInfo for resulting array of tile operation
static Nd4jLong* evalTileShapeInfo(const NDArray& arr, const std::vector<Nd4jLong>& reps, nd4j::memory::Workspace* workspace);
// returns shape part of shapeInfo as std::vector
static std::vector<Nd4jLong> pullShapeFromShapeInfo(Nd4jLong *shapeInfo);
static std::string shapeAsString(const NDArray* array);
static std::string shapeAsString(const std::vector<Nd4jLong>& shape);
static std::string shapeAsString(const Nd4jLong* shapeInfo);
static std::string shapeAsString(const int rank, const Nd4jLong* shapeInfo);
static std::string strideAsString(const NDArray* array);
// evaluate shapeInfo for diagonal array which is made using input arr elements as diagonal
static Nd4jLong* evalDiagShapeInfo(const Nd4jLong* shapeInfo, nd4j::memory::Workspace* workspace);
static std::vector<int> evalBroadcastBackwardAxis(const Nd4jLong *operand, const Nd4jLong *result);
// utility to calculate matrix product shape with give source shapes and additional params
// returns ShapeList pointer with result shape
static Nd4jLong* matrixProductShape(Nd4jLong* theFirstShape, Nd4jLong* theSecondShape, bool shouldTranspondFirst, bool shouldTranspondSecond, nd4j::DataType dtype, nd4j::memory::Workspace* workspace);
/**
* This method evaluates permutation vector necessary for reducing of shapeFrom to shapeTo
* if shapeFrom is identical to shapeTo (permutation is unnecessary) then empty vector is returned
* in case of permutation is impossible an exception is thrown
*/
static std::vector<int> evalPermutFromTo(const std::vector<Nd4jLong>& shapeFrom, const std::vector<Nd4jLong>& shapeTo);
/**
* This method composes shape (shape only, not whole shapeInfo!) using dimensions values and corresponding indexes,
* please note: the size of input vector dimsAndIdx must always be even, since the numbers of dimensions and indexes are the same,
* for example if dimsAndIdx = {dimC,dimB,dimA, 2,1,0} then output vector = {dimA,dimB,dimC}
*/
static std::vector<Nd4jLong> composeShapeUsingDimsAndIdx(const std::vector<int>& dimsAndIdx);
/**
* x * y = c, evaluate shape for array resulting from mmul operation
* possible cases: dot product (xRank=yRank=1), matrix-vector product (xRank=2, yRank=1), vector-matrix product (xRank=1, yRank=2), matrix-matrix product (xRank=yRank and rank >=2)
*/
static std::vector<Nd4jLong> evalShapeForMatmul(const Nd4jLong* xShapeInfo, const Nd4jLong* yShapeInfo, const bool transX, const bool transY);
/**
* evaluate number of sub-arrays along dimensions stored in dimsToExclude
* i.e. if shape is [2,3,4,5] and dimsToExclude={0,2}, then number of sub-arrays = 8
*/
static Nd4jLong getNumOfSubArrs(const Nd4jLong* shapeInfo, const std::vector<int>& dimsToExclude);
/**
* evaluate indexes ranges that define sub-array of array having shape=shapeInfo
* subArrIdx - index of current sub-array
* shapeInfo - shapeInfo of array for which to evaluate sub-arrays
* dimsToExclude - MUST BE SORTED, dimensions to evaluate sub-arrays along, i.e. when shape is [2,3,4,5] and dimsToExclude={0,2}, then there will be 8 sub-arrays with shape [3,5],
* if dimsToExclude is empty then idxRanges containing all zeros (means whole array) will be returned.
* idxRanges - where to put result, the length of idxRanges must be equal to 2*shapeInfo[0]
*/
static void evalIdxRangesForSubArr(const Nd4jLong subArrIdx, const Nd4jLong* shapeInfo, const std::vector<int>& dimsToExclude, Nd4jLong* idxRanges);
/**
* return shape without unities, for example if shape is [1,2,1,3] then [2,3] will be returned
* if unities are not present in given shapeInfo then exactly identical shape will be returned, for example [2,3] -> [2,3]
* edge case: if given shape is [1,1,1,...,1] (all dims are unities) then output will be empty and means scalar
*/
static std::vector<Nd4jLong> evalDimsWithoutUnities(const Nd4jLong* shapeInfo);
/**
* method returns false if permut == {0,1,2,...permut.size()-1} - in that case permutation is unnecessary
*/
FORCEINLINE static bool isPermutNecessary(const std::vector<int>& permut);
/**
* calculates strides using "dest" shape and given "order", also copies data type from "source" to "dest"
*/
static void updateStridesAndType(Nd4jLong* dest, const Nd4jLong* source, const char order);
/**
* calculates strides using "dest" shape and "order", also set "dtype" into "dest"
*/
static void updateStridesAndType(Nd4jLong* dest, const DataType dtype, const char order);
/**
* This method retuns number of bytes required for string tensor
* @param numStrings
* @return
*/
static Nd4jLong stringBufferHeaderRequirements(Nd4jLong numStrings);
};
//////////////////////////////////////////////////////////////////////////
///// IMLEMENTATION OF INLINE METHODS /////
//////////////////////////////////////////////////////////////////////////
FORCEINLINE bool ShapeUtils::isPermutNecessary(const std::vector<int>& permut) {
for(int i=0; i<permut.size(); ++i)
if(permut[i] != i)
return true;
return false;
}
}
#endif //LIBND4J_SHAPEUTILS_H