* fix pad javadoc and @see links. (#72) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * [WIP] More fixes (#73) * special tests for ConstantTadHelper/ConstantShapeHelper Signed-off-by: raver119 <raver119@gmail.com> * release methods for data buffers Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary buffer Java side Signed-off-by: raver119 <raver119@gmail.com> * delete temporary TadPack C++/Java side (#74) Signed-off-by: raver119 <raver119@gmail.com> * Zoo model TF import test updates (#75) * argLine fix, update compression_gru comment * updated comment for xception * undid but commented argLine change * updated xlnet comment * copyright headers * - new NDArray methods like()/ulike() (#77) - fix for depthwise_conv2d_bp + special test Signed-off-by: raver119 <raver119@gmail.com> * upsampling2d fix CUDA Signed-off-by: raver119 <raver119@gmail.com> * DL4J trace logging (#79) * MLN/CG trace logging for debugging Signed-off-by: AlexDBlack <blacka101@gmail.com> * Tiny tweak Signed-off-by: AlexDBlack <blacka101@gmail.com> * strided_slice_bp shape fn leak fix Signed-off-by: raver119 <raver119@gmail.com> * SameDiff fixes and naming (#78) * remove SDVariable inplace methods * import methods * npe fix in OpVal * removed SameDiff inplace ops from tests * Naming updates, moved to centralized methods in SameDiff, should use op_#:# for everything * quick fixes * javadoc * SDVariable eval with placeholders * use regex match * better matching * initial commit Signed-off-by: raver119 <raver119@gmail.com> * initial commit Signed-off-by: raver119 <raver119@gmail.com> * fix javadoc. (#76) * fix javadoc. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace most @see with @link s. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * 4 additional tests Signed-off-by: raver119 <raver119@gmail.com> * launch context reorganization Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext reorganization Signed-off-by: raver119 <raver119@gmail.com> * per-device LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * Various DL4J/ND4J fixes (#81) * #7954 Force refresh of UI when switching tabs on overview page Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8017 Concurrent modification exception (synchronize) fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8033 Don't initialize updater in middle of writing memory crash dump Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8208 Fix shape checks for ND4J int[] creator methods Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6385 #7992 Keras import naming fixes + cleanup Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8016 Upsampling3D - add NDHWC format support Signed-off-by: AlexDBlack <blacka101@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Refactor NativeOps.h to export C functions * Actually export functions from NativeOps.h * Adapt the Java wrappers in ND4J generated with JavaCPP * Create C wrappers for some of the C++ classes currently used by ND4J * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * remove duplicate code in createBufferDetached. (#83) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Keras model import - updater lr fix (#84) * Keras model import - updater lr fix Signed-off-by: eraly <susan.eraly@gmail.com> * Keras model import - updater lr fix, cleanup Signed-off-by: eraly <susan.eraly@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * ContextBuffers as separate entity Signed-off-by: raver119 <raver119@gmail.com> * Fix functions of OpaqueVariablesSet * thread-local buffers/affinity Signed-off-by: raver119 <raver119@gmail.com> * thread safety for LaunchContext Signed-off-by: raver119 <raver119@gmail.com> * more of thread safety Signed-off-by: raver119 <raver119@gmail.com> * one more multi threaded test Signed-off-by: raver119 <raver119@gmail.com> * SameDiff Convolution Config validation, better output methods (#82) * Conv Config validation & tests Signed-off-by: Ryan Nett <rnett@skymind.io> * stackOutputs utility method Signed-off-by: Ryan Nett <rnett@skymind.io> * use constructor for validation, support negative kernel sizes (infered from weights) Signed-off-by: Ryan Nett <rnett@skymind.io> * better output methods Signed-off-by: Ryan Nett <rnett@skymind.io> * move output to be with fit and evaluate Signed-off-by: Ryan Nett <rnett@skymind.io> * fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * more fixes Signed-off-by: Ryan Nett <rnett@skymind.io> * refactor duplicate code from pad methods. (#86) * refactor duplicate code from pad methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * replace switch with if. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes and improvements (#87) * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * Reshape and reallocate - small fixes Signed-off-by: AlexDBlack <blacka101@gmail.com> * #6488 ElementWiseVertex broadcast support Signed-off-by: AlexDBlack <blacka101@gmail.com> * Constructors and broadcast supported it Transforms.max/min Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8054 ElementWiseVertex now supports broadcast inputs Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8057 Nd4j.create overload dtype fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7551 ND4J Shape validation fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * [WIP] Numpy boolean import (#91) * numpy bool type Signed-off-by: raver119 <raver119@gmail.com> * numpy bool java side Signed-off-by: raver119 <raver119@gmail.com> * remove create method with unused parameter. (#89) * remove create method with unused parameter. * removed more unused methods. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * removing more unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * last removal of unused code. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * remove createSparse methods. (#92) Signed-off-by: Robert Altena <Rob@Ra-ai.com> * Various ND4J/DL4J fixes (#90) * Deprecate Old*Op instances Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8063 #8054 Broadcast exceptions + cleanup inplace ops Signed-off-by: AlexDBlack <blacka101@gmail.com> * Small fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * Remove bad test condition Signed-off-by: AlexDBlack <blacka101@gmail.com> * #7993 Fix shape function issue in crop_and_resize op Signed-off-by: AlexDBlack <blacka101@gmail.com> * DL4J SameDiff lambda layer fix Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8029 Fix for pnorm backprop math Signed-off-by: AlexDBlack <blacka101@gmail.com> * #8038 Fix Op profiler NaN/Inf triggering + add tests (#93) Signed-off-by: AlexDBlack <blacka101@gmail.com> * createUninitializedDetached refactoring. (#94) * wip * update interface, add null implementations. * Breaking one test in a weird way. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * createUninitializedDetached refactored. Signed-off-by: Robert Altena <Rob@Ra-ai.com> * cuda build fix for issues introduced by recent refactoring Signed-off-by: raver119 <raver119@gmail.com> * [WIP] More of CUDA (#95) * initial commit Signed-off-by: raver119 <raver119@gmail.com> * Implementation of hashcode cuda helper. Working edition. * Fixed parallel test input arangements. * Fixed tests for hashcode op. * Fixed shape calculation for image:crop_and_resize op and test. * NativeOps tests. Initial test suite. * Added tests for indexReduce methods. * Added test on execBroadcast with NDArray as dimensions. * Added test on execBroadcastBool with NDArray as dimensions. * Added tests on execPairwiseTransform and execPairwiseTransofrmBool. * Added tests for execReduce with scalar results. * Added reduce tests for non-empty dims array. * Added tests for reduce3. * Added tests for execScalar. * Added tests for execSummaryStats. * - provide cpu/cuda code for batch_to_space - testing it Signed-off-by: Yurii <yurii@skymind.io> * - remove old test for batch_to_space (had wrong format and numbers were not checked) Signed-off-by: Yurii <yurii@skymind.io> * Fixed complilation errors with test. * Added test for execTransformFloat. * Added test for execTransformSame. * Added test for execTransformBool. * Added test for execTransformStrict. * Added tests for execScalar/execScalarBool with TADs. * Added test for flatten. * - provide cpu/cuda code for space_to_Batch operaion Signed-off-by: Yurii <yurii@skymind.io> * Added test for concat. * comment unnecessary stuff in s_t_b Signed-off-by: Yurii <yurii@skymind.io> * Added test for specialConcat. * Added tests for memcpy/set routines. * Fixed pullRow cuda test. * Added pullRow test. * Added average test. * - correct typo in NDArray::applyPairwiseTransform(nd4j::pairwise::BoolOps op...) Signed-off-by: Yurii <yurii@skymind.io> * - debugging and fixing cuda tests in JavaInteropTests file Signed-off-by: Yurii <yurii@skymind.io> * - correct some tests Signed-off-by: Yurii <yurii@skymind.io> * Added test for shuffle. * Fixed ops declarations. * Restored omp and added shuffle test. * Added convertTypes test. * Added tests for execRandom. Eliminated usage of RandomBuffer with NativeOps. * Added sort tests. * Added tests for execCustomOp. * - further debuging and fixing tests terminated with crash Signed-off-by: Yurii <yurii@skymind.io> * Added tests for calculateOutputShapes. * Addded Benchmarks test. * Commented benchmark tests. * change assertion Signed-off-by: raver119 <raver119@gmail.com> * Added tests for apply_sgd op. Added cpu helper for that op. * Implement cuda helper for aplly_sgd op. Fixed tests for NativeOps. * Added test for assign broadcastable. * Added tests for assign_bp op. * Added tests for axpy op. * - assign/execScalar/execTransformAny signature change - minor test fix Signed-off-by: raver119 <raver119@gmail.com> * Fixed axpy op. * meh Signed-off-by: raver119 <raver119@gmail.com> * - fix tests for nativeOps::concat Signed-off-by: Yurii <yurii@skymind.io> * sequential transform/scalar Signed-off-by: raver119 <raver119@gmail.com> * allow nested parallelism Signed-off-by: raver119 <raver119@gmail.com> * assign_bp leak fix Signed-off-by: raver119 <raver119@gmail.com> * block setRNG fix Signed-off-by: raver119 <raver119@gmail.com> * enable parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * enable nested parallelism by default Signed-off-by: raver119 <raver119@gmail.com> * Added cuda implementation for row_count helper. * Added implementation for tnse gains op helper. * - take into account possible situations when input arrays are empty in reduce_ cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implemented tsne/edge_forces op cuda-based helper. Parallelized cpu-based helper for edge_forces. * Added kernel for tsne/symmetrized op heleper. * Implementation of tsne/symmetrized op cuda helper. Working edition. * Eliminated waste printfs. * Added test for broadcastgradientargs op. * host-only fallback for empty reduce float Signed-off-by: raver119 <raver119@gmail.com> * - some tests fixes Signed-off-by: Yurii <yurii@skymind.io> * - correct the rest of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * - further correction of reduce_ stuff Signed-off-by: Yurii <yurii@skymind.io> * Added test for Cbow op. Also added cuda implementation for cbow helpers. * - improve code of stack operation for scalar case Signed-off-by: Yurii <yurii@skymind.io> * - provide cuda kernel for gatherND operation Signed-off-by: Yurii <yurii@skymind.io> * Implementation of cbow helpers with cuda kernels. * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * minor tests tweaks Signed-off-by: raver119 <raver119@gmail.com> * - further correction of cuda stuff Signed-off-by: Yurii <yurii@skymind.io> * Implementatation of cbow op helper with cuda kernels. Working edition. * Skip random testing for cudablas case. * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for ELU and ELU_BP ops. * Added tests for eq_scalar, gt_scalar, gte_scalar and lte_scalar ops. * Added tests for neq_scalar. * Added test for noop. * - further work on clipbynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * - get rid of concat op call, use instead direct concat helper call Signed-off-by: Yurii <yurii@skymind.io> * lstmBlockCell context fix Signed-off-by: raver119 <raver119@gmail.com> * Added tests for lrelu and lrelu_bp. * Added tests for selu and selu_bp. * Fixed lrelu derivative helpers. * - some corrections in lstm Signed-off-by: Yurii <yurii@skymind.io> * operator * result shape fix Signed-off-by: raver119 <raver119@gmail.com> * - correct typo in lstmCell Signed-off-by: Yurii <yurii@skymind.io> * few tests fixed Signed-off-by: raver119 <raver119@gmail.com> * CUDA inverse broadcast bool fix Signed-off-by: raver119 <raver119@gmail.com> * disable MMAP test for CUDA Signed-off-by: raver119 <raver119@gmail.com> * BooleanOp syncToDevice Signed-off-by: raver119 <raver119@gmail.com> * meh Signed-off-by: raver119 <raver119@gmail.com> * additional data types for im2col/col2im Signed-off-by: raver119 <raver119@gmail.com> * Added test for firas_sparse op. * one more RandomBuffer test excluded Signed-off-by: raver119 <raver119@gmail.com> * Added tests for flatten op. * Added test for Floor op. * bunch of tests fixed Signed-off-by: raver119 <raver119@gmail.com> * mmulDot tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Implemented floordiv_bp op and tests. * Fixed scalar case with cuda implementation for bds. * - work on cuda kernel for clip_by_norm backprop op is completed Signed-off-by: Yurii <yurii@skymind.io> * Eliminate cbow crach. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Eliminated abortion with batched nlp test. * more tests fixed Signed-off-by: raver119 <raver119@gmail.com> * Fixed shared flag initializing. * disabled bunch of cpu workspaces tests Signed-off-by: raver119 <raver119@gmail.com> * scalar operators fix: missing registerSpecialUse call Signed-off-by: raver119 <raver119@gmail.com> * Fixed logdet for cuda and tests. * - correct clipBynorm_bp Signed-off-by: Yurii <yurii@skymind.io> * Fixed crop_and_resize shape datatype. * - correct some mmul tests Signed-off-by: Yurii <yurii@skymind.io> * build fix Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI Signed-off-by: raver119 <raver119@gmail.com> * exclude two methods for JNI (#97) Signed-off-by: raver119 <raver119@gmail.com> * temporary stack fix Signed-off-by: raver119 <raver119@gmail.com> * round robin affinity test Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy CudaContext methods Signed-off-by: raver119 <raver119@gmail.com> * get rid of legacy ContextPool classes/methods Signed-off-by: raver119 <raver119@gmail.com> * one legacy test removed Signed-off-by: raver119 <raver119@gmail.com> * few more fields rearranged Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext Signed-off-by: raver119 <raver119@gmail.com> * OpaqueLaunchContext++ Signed-off-by: raver119 <raver119@gmail.com> * more of OpaqueLaunchContext methods Signed-off-by: raver119 <raver119@gmail.com> * LaunchContext -> CudaContext Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * AffinityManger changes Signed-off-by: raver119 <raver119@gmail.com> * cusolver handles Signed-off-by: raver119 <raver119@gmail.com> * typo Signed-off-by: raver119 <raver119@gmail.com> * cusolver method Signed-off-by: raver119 <raver119@gmail.com> * cusolver handle propagated Signed-off-by: raver119 <raver119@gmail.com> * blas/solver handles Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * legacy concat implementations replaced with new CustomOp Signed-off-by: raver119 <raver119@gmail.com> * one more test Signed-off-by: raver119 <raver119@gmail.com> * concat now uses way more blocks Signed-off-by: raver119 <raver119@gmail.com> * print Signed-off-by: raver119 <raver119@gmail.com> * no more triple template mmul Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bunch of kernels have dtypes reconsidered Signed-off-by: raver119 <raver119@gmail.com> * bitonic sort reorganized Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * bunch of cpu stuff removed from cuda scope Signed-off-by: raver119 <raver119@gmail.com> * type conversions moved to generic impl Signed-off-by: raver119 <raver119@gmail.com> * cpu data types pass Signed-off-by: raver119 <raver119@gmail.com> * non_max_suppression Signed-off-by: raver119 <raver119@gmail.com> * sortByValue fix Signed-off-by: raver119 <raver119@gmail.com> * ignore all mixed datatype tests for mmul Signed-off-by: raver119 <raver119@gmail.com> * special handling of OpProfiler exceptions Signed-off-by: raver119 <raver119@gmail.com> * - one failing concat test in cpp - Nd4j.tile now uses op internally Signed-off-by: raver119 <raver119@gmail.com> * get back dtype exception for legacy arrays deserialization Signed-off-by: raver119 <raver119@gmail.com>
515 lines
23 KiB
Plaintext
515 lines
23 KiB
Plaintext
/*******************************************************************************
|
|
* Copyright (c) 2015-2018 Skymind, Inc.
|
|
*
|
|
* This program and the accompanying materials are made available under the
|
|
* terms of the Apache License, Version 2.0 which is available at
|
|
* https://www.apache.org/licenses/LICENSE-2.0.
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
* License for the specific language governing permissions and limitations
|
|
* under the License.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
******************************************************************************/
|
|
|
|
#ifndef NDARRAY_CPP
|
|
#define NDARRAY_CPP
|
|
|
|
#include "../NDArray.h"
|
|
#include "../NDArrayFactory.h"
|
|
#include "NativeOpExecutioner.h"
|
|
#include <memory/Workspace.h>
|
|
#include <memory/MemoryRegistrator.h>
|
|
#include <ops.h>
|
|
#include <ops/gemm.h>
|
|
#include <pointercast.h>
|
|
#include <stdexcept>
|
|
#include <memory>
|
|
#include <helpers/logger.h>
|
|
#include <loops/pairwise_transform.h>
|
|
#include <loops/transform_same.h>
|
|
#include <loops/random.h>
|
|
#include <loops/broadcasting.h>
|
|
#include <indexing/NDIndex.h>
|
|
#include <indexing/IndicesList.h>
|
|
#include <helpers/ShapeUtils.h>
|
|
#include <sstream>
|
|
#include <helpers/ArrayUtils.h>
|
|
#include <MmulHelper.h>
|
|
#include <helpers/threshold.h>
|
|
#include <exceptions/datatype_exception.h>
|
|
#include <exceptions/cuda_exception.h>
|
|
#include <specials_cuda.h>
|
|
#include <loops/special_kernels.h>
|
|
#include <PointersManager.h>
|
|
#include "../NDArray.hpp"
|
|
#include <ConstantShapeHelper.h>
|
|
|
|
namespace nd4j {
|
|
|
|
void* NDArray::platformBuffer() { return specialBuffer(); }
|
|
void* NDArray::getPlatformBuffer() const { return getSpecialBuffer(); }
|
|
|
|
Nd4jLong* NDArray::getPlatformShapeInfo() const { return getSpecialShapeInfo(); }
|
|
Nd4jLong* NDArray::platformShapeInfo() { return specialShapeInfo(); }
|
|
|
|
void NDArray::syncToDevice() const { _buffer->syncToSpecial(); }
|
|
void NDArray::syncToHost() const { _buffer->syncToPrimary(getContext()); }
|
|
void NDArray::tickWriteHost() const { _buffer->writePrimary(); }
|
|
void NDArray::tickWriteDevice() const { _buffer->writeSpecial(); }
|
|
void NDArray::tickReadHost() const { _buffer->readPrimary(); }
|
|
void NDArray::tickReadDevice() const { _buffer->readSpecial(); }
|
|
void NDArray::tickBothActual() const { _buffer->writePrimary(); _buffer->readSpecial(); }
|
|
bool NDArray::isActualOnHostSide() const { return _buffer->isPrimaryActual(); }
|
|
bool NDArray::isActualOnDeviceSide() const { return _buffer->isSpecialActual(); }
|
|
void NDArray::makeBothBuffersActual() const { if(!isActualOnHostSide()) syncToHost(); if(!isActualOnDeviceSide()) syncToDevice(); }
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void fillAsTriangularCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const T val, const int lower, const int upper) {
|
|
|
|
const auto x = reinterpret_cast<const T*>(vx);
|
|
auto z = reinterpret_cast<T*>(vz);
|
|
|
|
__shared__ int zRank, xRank, areSameOffsets; // xRank == zRank always, except when xRank = 1, in this case zRank = 2
|
|
__shared__ Nd4jLong zLen, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
areSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo);
|
|
xRank = shape::rank(xShapeInfo);
|
|
zRank = shape::rank(zShapeInfo);
|
|
zLen = shape::length(zShapeInfo);
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * zRank;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < zLen; i += totalThreads) {
|
|
|
|
shape::index2coords(zRank, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), i, zLen, coords);
|
|
const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(zShapeInfo)), shape::stride(const_cast<Nd4jLong*>(zShapeInfo)), coords, zRank);
|
|
|
|
// if( (row + upper < col) || (row + lower > col) )
|
|
if((coords[zRank - 2] + upper < coords[zRank - 1]) || (coords[zRank - 2] + lower > coords[zRank - 1]))
|
|
z[zOffset] = val;
|
|
else if(vx != vz) { // when x and z are different arrays
|
|
if(xRank != zRank)
|
|
coords[0] = coords[1];
|
|
const auto xOffset = areSameOffsets ? zOffset : shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), shape::stride(const_cast<Nd4jLong*>(xShapeInfo)), coords, xRank);
|
|
z[zOffset] = x[xOffset];
|
|
}
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::fillAsTriangular(const float val, int lower, int upper, const char direction, NDArray* target) {
|
|
|
|
if (isS())
|
|
throw std::runtime_error("NDArray::fillAsTriangular: you can't use this method on String array!");
|
|
|
|
if(target == nullptr)
|
|
target = this;
|
|
|
|
if(!isSameShape(target) && !(rankOf() == 1 && target->rankOf() == 2 && sizeAt(0) == target->sizeAt(0) && sizeAt(0) == target->sizeAt(1)))
|
|
throw std::string("NDArray::fillAsTriangular method: wrong shape of target array !");
|
|
|
|
if (direction == 'u')
|
|
lower = -target->sizeAt(-2);
|
|
else if (direction == 'l')
|
|
upper = target->sizeAt(-1);
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
|
const int blocksPerGrid = (target->lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(decltype(*target->getShapeInfo())) * target->rankOf() + 128;
|
|
|
|
PointersManager manager(getContext(), "NDArray::fillAsTriangular");
|
|
|
|
NDArray::prepareSpecialUse({target}, {this});
|
|
fillAsTriangularCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *getContext()->getCudaStream()>>>(getPlatformBuffer(), getPlatformShapeInfo(), target->getPlatformBuffer(), target->getPlatformShapeInfo(), static_cast<T>(val), lower, upper);
|
|
NDArray::registerSpecialUse({target}, {this});
|
|
|
|
manager.synchronize();
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void NDArray::fillAsTriangular, (const float val, int lower, int upper, const char direction, NDArray* target), LIBND4J_TYPES);
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
__global__ static void identityMatrixCuda(void* vx, const Nd4jLong* xShapeInfo, const T val) {
|
|
|
|
auto x = reinterpret_cast<T*>(vx);
|
|
|
|
__shared__ int rank;
|
|
__shared__ Nd4jLong len, totalThreads, *sharedMem; // xLen == zLen, except when xRank = 1, in this case zLen = 2*xLen
|
|
|
|
if (threadIdx.x == 0) {
|
|
|
|
extern __shared__ unsigned char shmem[];
|
|
sharedMem = reinterpret_cast<Nd4jLong*>(shmem);
|
|
rank = shape::rank(xShapeInfo);
|
|
len = shape::length(xShapeInfo);
|
|
totalThreads = gridDim.x * blockDim.x;
|
|
}
|
|
|
|
__syncthreads();
|
|
|
|
auto coords = sharedMem + threadIdx.x * rank;
|
|
|
|
const auto tid = blockIdx.x * blockDim.x + threadIdx.x;
|
|
|
|
for (Nd4jLong i = tid; i < len; i += totalThreads) {
|
|
|
|
shape::index2coords(rank, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), i, len, coords);
|
|
const auto offset = shape::getOffset(0, shape::shapeOf(const_cast<Nd4jLong*>(xShapeInfo)), shape::stride(const_cast<Nd4jLong*>(xShapeInfo)), coords, rank);
|
|
|
|
if(coords[rank - 2] == coords[rank - 1]) // row == col -> on diagonal
|
|
x[offset] = val;
|
|
else
|
|
x[offset] = static_cast<T>(0);
|
|
}
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
static void identityMatrixCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val) {
|
|
|
|
identityMatrixCuda<T><<<blocksPerGrid, threadsPerBlock, sharedMem, *stream>>>(vx, xShapeInfo, static_cast<T>(val));
|
|
}
|
|
BUILD_SINGLE_TEMPLATE(template void identityMatrixCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vx, const Nd4jLong *xShapeInfo, const float val), LIBND4J_TYPES);
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::setIdentity() {
|
|
if (isS())
|
|
throw std::runtime_error("NDArray::setIdentity: you can't use this method on String array!");
|
|
|
|
// if (rankOf() != 2)
|
|
// throw std::runtime_error("NDArray::setIdentity: method should work only for 2D tensors. But " + toStringValue(rankOf()) + " was given.");
|
|
|
|
const int threadsPerBlock = MAX_NUM_THREADS / 4;
|
|
const int blocksPerGrid = (lengthOf() + threadsPerBlock - 1) / threadsPerBlock;
|
|
const int sharedMem = threadsPerBlock * sizeof(decltype(getShapeInfo())) * rankOf() + 128;
|
|
|
|
PointersManager manager(getContext(), "NDArray::setIdentity");
|
|
|
|
syncToDevice();
|
|
BUILD_SINGLE_SELECTOR(dataType(), identityMatrixCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, getContext()->getCudaStream(), getPlatformBuffer(), getPlatformShapeInfo(), 1.f), LIBND4J_TYPES);
|
|
tickWriteDevice();
|
|
|
|
manager.synchronize();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
void NDArray::swapUnsafe(NDArray& other) {
|
|
auto xType = this->dataType();
|
|
|
|
if (xType != other.dataType())
|
|
throw std::runtime_error("NDArray::swapUnsage method: both arrays must have the same data type");
|
|
|
|
if(specialBuffer() == nullptr || other.specialBuffer() == nullptr)
|
|
throw std::runtime_error("NDArray::swapUnsafe method: input array should not be empty!");
|
|
|
|
if(lengthOf() != other.lengthOf())
|
|
throw std::runtime_error("NDArray::swapUnsafe method: input arrays should have the same length!");
|
|
|
|
BUILD_SINGLE_SELECTOR(xType, templatedSwapUnsafe, (specialBuffer(), specialShapeInfo(), other.specialBuffer(), other.specialShapeInfo(), getContext()->getCudaStream()), LIBND4J_TYPES);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::synchronize(const char* msg) const {
|
|
auto res = cudaStreamSynchronize(*(getContext()->getCudaStream()));
|
|
if (res != 0)
|
|
throw std::runtime_error(msg + std::string(": synchronization failed !"));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::prepareSpecialUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList, bool synchronizeWritables) {
|
|
|
|
for (const auto& a : readList)
|
|
if(a != nullptr)
|
|
a->syncToDevice();
|
|
|
|
for (const auto& a : writeList) {
|
|
if (a != nullptr) {
|
|
a->getDataBuffer()->allocateSpecial();
|
|
if (synchronizeWritables)
|
|
a->syncToDevice();
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::registerSpecialUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList) {
|
|
|
|
for (const auto& p : readList)
|
|
if(p != nullptr)
|
|
p->tickReadDevice();
|
|
|
|
for (const auto& p : writeList)
|
|
if (p != nullptr)
|
|
p->tickWriteDevice();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::preparePrimaryUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList, bool synchronizeWritables) {
|
|
|
|
for (const auto& a : readList)
|
|
if(a != nullptr)
|
|
a->syncToHost();
|
|
|
|
for (const auto& a : writeList) {
|
|
if (a != nullptr) {
|
|
a->getDataBuffer()->allocatePrimary();
|
|
if (synchronizeWritables)
|
|
a->syncToHost();
|
|
}
|
|
}
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void NDArray::registerPrimaryUse(const std::initializer_list<const NDArray*>& writeList, const std::initializer_list<const NDArray*>& readList) {
|
|
|
|
for (const auto& p : readList)
|
|
if(p != nullptr)
|
|
p->tickReadHost();
|
|
|
|
for (const auto& p : writeList)
|
|
if (p != nullptr)
|
|
p->tickWriteHost();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void NDArray::syncShape() const {
|
|
cudaMemcpy(getSpecialShapeInfo(), getShapeInfo(), shape::shapeInfoByteLength(getShapeInfo()), cudaMemcpyHostToDevice);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void* NDArray::specialBufferWithOffset(Nd4jLong offset) const {
|
|
return getSpecialBuffer() != nullptr ? static_cast<int8_t*>(getSpecialBuffer()) + (offset * sizeOfT()) : nullptr;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// change an array by repeating it the number of times given by reps.
|
|
NDArray NDArray::tile(const std::vector<Nd4jLong>& reps) const {
|
|
int dim = reps.size();
|
|
Nd4jLong product = 1;
|
|
for(const auto& item : reps)
|
|
product *= item;
|
|
if(product == 0)
|
|
throw std::runtime_error("NDArray::tile method: one of the elements in reps array is zero !");
|
|
|
|
int rankOld = rankOf();
|
|
int diff = rankOld - dim;
|
|
if(product==1) { // in this case 2 possibilities are present: just reshape or nothing to do
|
|
NDArray result(*this);
|
|
if(diff < 0) { // reshape to higher dimension
|
|
std::vector<Nd4jLong> shapeNew = reps; // need to have unities at first "diff" positions of new shape
|
|
memcpy(&shapeNew[-diff], result.getShapeInfo()+1, rankOld * sizeof(Nd4jLong)); // put old shape numbers at rest of positions
|
|
result.reshapei(ordering(), shapeNew);
|
|
}
|
|
return result; // nothing to do, if diff >= 0 -> identity tile
|
|
}
|
|
|
|
// evaluate shapeInfo for resulting array
|
|
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
|
|
// create new buffer, in any case the memory amount new buffer points to is bigger then those for old _buffer
|
|
std::shared_ptr<DataBuffer> newBuff = std::make_shared<DataBuffer>(shape::length(newShapeInfo) * sizeOfT(), dataType(), getContext()->getWorkspace(), true);
|
|
// assign new shape and new buffer to resulting array
|
|
NDArray result(newBuff, ShapeDescriptor(newShapeInfo), getContext());
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
|
|
const auto resultLen = result.lengthOf();
|
|
auto xType = this->dataType();
|
|
auto stream = getContext()->getCudaStream();
|
|
|
|
prepareSpecialUse({&result}, {this});
|
|
BUILD_SINGLE_SELECTOR(xType, tileKernelH, (this->getSpecialBuffer(), this->getSpecialShapeInfo(), result.getSpecialBuffer(), result.getSpecialShapeInfo(), resultLen, stream), LIBND4J_TYPES);
|
|
registerSpecialUse({&result}, {this});
|
|
|
|
return result;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// change an array by repeating it the number of times given by reps.
|
|
void NDArray::tile(const std::vector<Nd4jLong>& reps, NDArray& target) const {
|
|
|
|
// evaluate true tile shapeInfo for comparison with target shapeInfo
|
|
auto newShapeInfo = ShapeUtils::evalTileShapeInfo(*this, reps, getContext()->getWorkspace());
|
|
if(!shape::equalsSoft(newShapeInfo, target.getShapeInfo())) {
|
|
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
|
|
}
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
|
|
const int ews = target.ews();
|
|
const int targetLen = target.lengthOf();
|
|
auto stream = getContext()->getCudaStream();
|
|
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR_TWICE(target.dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
void NDArray::tile(NDArray& target) const {
|
|
if(rankOf() > target.rankOf())
|
|
throw std::runtime_error("NDArray::tile method - rank of target array must be bigger or equal to the rank of this array !");
|
|
|
|
if(!ShapeUtils::areShapesBroadcastable(*this, target))
|
|
throw std::runtime_error("NDArray::tile method - shapeInfo of target array is not suitable for tile operation !");
|
|
|
|
// fill newBuff, loop through all elements of newBuff
|
|
// looping through getBuffer() goes automatically by means of getSubArrayIndex applying
|
|
const auto ews = target.ews();
|
|
const auto targetLen = target.lengthOf();
|
|
auto stream = getContext()->getCudaStream();
|
|
|
|
prepareSpecialUse({&target}, {this});
|
|
BUILD_SINGLE_SELECTOR_TWICE(target.dataType(), tileKernelHH, (getSpecialBuffer(), getSpecialShapeInfo(), target.getSpecialBuffer(), target.getSpecialShapeInfo(), targetLen, ews, stream), LIBND4J_TYPES);
|
|
registerSpecialUse({&target}, {this});
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// create new array by repeating it the number of times given by reps
|
|
NDArray* NDArray::repeat(int dimension, const std::vector<Nd4jLong>& repeats) const {
|
|
auto outShape = ShapeUtils::evalRepeatShape(dimension, repeats, *this);
|
|
|
|
// the size of outShape == rank
|
|
int rank = rankOf(); // = outShape.size()
|
|
|
|
std::vector<Nd4jLong> newShape(rank);
|
|
for (int i = 0; i < rank; i++)
|
|
newShape[i] = outShape[i];
|
|
|
|
auto ret = new NDArray('c', outShape, dataType(), getContext());
|
|
|
|
auto repeatDelta = shape::prodLong(newShape.data(), rank) / this->lengthOf();
|
|
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rankOf(), {dimension});
|
|
const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(getShapeInfo(), dimsToExclude); //this->tensorsAlongDimension({dimension});
|
|
std::vector<int> copy({dimension});
|
|
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(this->getShapeInfo(), copy);
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(ret->getShapeInfo(), copy);
|
|
|
|
prepareSpecialUse({ret}, {this});
|
|
auto stream = getContext()->getCudaStream();
|
|
BUILD_SINGLE_SELECTOR(dataType(), repeatKernelH, (getSpecialBuffer(), ret->getSpecialBuffer(), numTads, lengthOf(), ret->lengthOf(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), *stream), LIBND4J_TYPES);
|
|
registerSpecialUse({ret}, {this});
|
|
|
|
return ret;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
// fill array by repeating it the number of times given by reps
|
|
void NDArray::repeat(int dimension, NDArray& target) const {
|
|
|
|
if(dimension < 0)
|
|
dimension += rankOf();
|
|
|
|
if(rankOf() != target.rankOf())
|
|
throw std::invalid_argument("NDArray::repeat(int dimension, NDArray& target) method: wrong rank of target array it must be equal to this array rank!");
|
|
|
|
Nd4jLong repeatDelta = target.sizeAt(dimension) / sizeAt(dimension);
|
|
|
|
if(repeatDelta == 0)
|
|
throw std::invalid_argument("NDArray::repeat(int dimension, NDArray& target) method: wrong shape of target array!");
|
|
|
|
|
|
std::vector<int> dimsToExclude = ShapeUtils::evalDimsToExclude(rankOf(), {dimension});
|
|
const Nd4jLong numTads = ShapeUtils::getNumOfSubArrs(getShapeInfo(), dimsToExclude);
|
|
|
|
std::vector<int> copy({dimension});
|
|
auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(this->getShapeInfo(), copy);
|
|
auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(target.getShapeInfo(), copy);
|
|
|
|
NDArray::prepareSpecialUse({&target}, {this});
|
|
auto stream = getContext()->getCudaStream();
|
|
BUILD_SINGLE_SELECTOR_TWICE(target.dataType(), repeatKernelHH, (getSpecialBuffer(), target.getSpecialBuffer(), numTads, lengthOf(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), *stream), LIBND4J_TYPES);
|
|
NDArray::registerSpecialUse({&target}, {this});
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void* NDArray::specialBuffer() {
|
|
|
|
if (_buffer->special() == nullptr)
|
|
return getBuffer();
|
|
// FIXME: this should be fixed once CUDA backend added
|
|
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
void* NDArray::getSpecialBuffer() const {
|
|
if (_buffer->special() == nullptr)
|
|
return getBuffer();
|
|
// FIXME: this should be fixed once CUDA backend added
|
|
return static_cast<int8_t*>(_buffer->special()) + (_offset * sizeOfT());
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template<typename T>
|
|
void NDArray::printCurrentBuffer(const bool host, const char* msg, const int precision) const {
|
|
|
|
if(_length == 0)
|
|
{ printf("NDArray::printActualBuffer: array length is zero !\n"); return; }
|
|
|
|
if(msg)
|
|
printf("%s", msg);
|
|
|
|
if(host) {
|
|
if(getBuffer() == nullptr || _length == 0)
|
|
{ printf("NDArray::printActualBuffer: host buffer is nullptr !\n"); return; }
|
|
|
|
const T* buff = bufferAsT<T>();
|
|
for (uint i = 0; i < _length; i++)
|
|
printf("%.*f, ", precision, (double)buff[getOffset(i)]);
|
|
printf("\n");
|
|
}
|
|
else {
|
|
if(getSpecialBuffer() == nullptr || _length == 0)
|
|
{ printf("NDArray::printSpecialBuffer: special buffer is nullptr !\n"); return; }
|
|
|
|
void* pHost = operator new(sizeof(T) * _length);
|
|
|
|
if (ews() != 1) {
|
|
for (uint i = 0; i < _length; i++)
|
|
cudaMemcpyAsync(reinterpret_cast<T*>(pHost) + i, specialBufferWithOffset(i), sizeof(T), cudaMemcpyDeviceToHost, *(getContext()->getCudaStream()));
|
|
}
|
|
else
|
|
cudaMemcpyAsync(pHost, getSpecialBuffer(), sizeOfT() * _length, cudaMemcpyDeviceToHost, *getContext()->getCudaStream());
|
|
|
|
cudaError_t cudaResult = cudaStreamSynchronize(*getContext()->getCudaStream());
|
|
if(cudaResult != 0)
|
|
throw std::runtime_error("NDArray::printSpecialBuffer: cudaStreamSynchronize failed!");
|
|
|
|
for (uint i = 0; i < _length; i++)
|
|
printf("%.*f, ", precision, (double)reinterpret_cast<T*>(pHost)[i]);
|
|
printf("\n");
|
|
|
|
operator delete(pHost);
|
|
}
|
|
}
|
|
template void NDArray::printCurrentBuffer<int>(const bool host,const char* msg, const int precision) const;
|
|
template void NDArray::printCurrentBuffer<float>(const bool host, const char* msg, const int precision) const;
|
|
template void NDArray::printCurrentBuffer<double>(const bool host, const char* msg, const int precision) const;
|
|
|
|
|
|
#if defined(__CUDACC__) && !defined(BUILD_TESTS)
|
|
|
|
//#include <cpu/NDArrayLambda.hpp>
|
|
|
|
#endif
|
|
|
|
} // end namespace nd4j
|
|
#endif
|
|
|