/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author raver119@gmail.com // #ifndef LIBND4J_HEADERS_PARITY_H #define LIBND4J_HEADERS_PARITY_H #include namespace sd { namespace ops { /** * This operation returns index of max element in a given NDArray (optionally: along given dimension(s)) * Expected input: * 0: N-dimensional array * 1: optional axis vector * * Int args: * 0: optional axis */ #if NOT_EXCLUDED(OP_argmax) DECLARE_CUSTOM_OP(argmax, 1, 1, false, 0, -2); #endif /** * This operation returns index of min element in a given NDArray (optionally: along given dimension(s)) * Expected input: * 0: N-dimensional array * 1: optional axis vector * * Int args: * 0: optional axis */ #if NOT_EXCLUDED(OP_argmin) DECLARE_CUSTOM_OP(argmin, 1, 1, false, 0, -2); #endif /** * This operation returns index of absolute max element in a given NDArray (optionally: along given dimension(s)) * Expected input: * 0: N-dimensional array * 1: optional axis vector * * Int args: * 0: optional axis */ #if NOT_EXCLUDED(OP_argamax) DECLARE_CUSTOM_OP(argamax, 1, 1, false, 0, -2); #endif /** * This operation returns index of absolute min element in a given NDArray (optionally: along given dimension(s)) * Expected input: * 0: N-dimensional array * 1: optional axis vector * * Int args: * 0: optional axis */ #if NOT_EXCLUDED(OP_argamin) DECLARE_CUSTOM_OP(argamin, 1, 1, false, 0, -2); #endif /** * This operation provides various normalization modes: * 0: frobenius * 1: euclidean (norm2) * 2: norm1 * 3: norm2 * 4: inf-norm * 5: p-norm * * Expected arguments: * input: N-dimensional array * * * Int args: * 0...: axis * * T args: * 0: norm mode * 1: p for p-norm */ #if NOT_EXCLUDED(OP_norm) DECLARE_REDUCTION_OP(norm, 1, 1, false, 1, -2); #endif /** * Inserts elements provided by diagonal array into the main diagonal of innermost matrices of input array * * Input arrays: * 0: input array, considered as batch of matrices * 1: diagonal array containing elements to be inserted into input array, * following rank condition should be satisfied: diagonal_rank = input_rank - 1, * the shapes of diagonal and input arrays must be equal except last dimension of input array, * for example if input_shape = [A,B,C,D] then diagonal_shape = [A,B,C], * also last dimension of diagonal array should be equal to smaller of last and last but one input dimensions * that is: diagonal_shape[-1] = min(input_shape[-1], input_shape[-2]) * * Output array: * 0: has the same shape as input, corresponding diagonal elements are substituted */ #if NOT_EXCLUDED(OP_matrix_set_diag) DECLARE_CONFIGURABLE_OP(matrix_set_diag, 2, 1, false, 0, 0); #endif /** * Inserts elements provided by diagonal array into the main diagonal of innermost matrices of output array, * rest output elements are set to zeros * * Input array: * diagonal: array containing elements to be inserted into output array, * following rank condition is present: diagonal_rank = ouput_rank - 1 * * Output array: * 0: is considered as batch of matrices, if for example diagonal array has shape [A,B,C] then output array has shape [A,B,C,C] */ DECLARE_CUSTOM_OP(matrix_diag, 1, 1, false, 0, 0); /** * This op calculates regularized incomplete beta integral Ix(a, b). * Implementation is based on two algorithms depending on input values of a and b: * - when a and b are both > maxValue (3000.), then Gauss-Legendre quadrature method is applied * - when a and b are both <= maxValue (3000.), then modified Lentz’s algorithm for continued fractions is applied * * Input arrays: * a: defines power t^{a-1}, must be > 0, type float. * b: defines power (1-t)^{b-1}, must be > 0, type float. * x: defines upper limit of integration, must be within (0 <= x <= 1) range, type float. * * Output array: * 0: values of regularized incomplete beta integral that corresponds to variable upper limit x, type float * * Three input and one output arrays must have the same shape */ #if NOT_EXCLUDED(OP_betainc) DECLARE_CONFIGURABLE_OP(betainc, 3, 1, false, 0, 0); #endif /** * This operation is added for compatibility purposes mostly. * PLEASE NOTE: Please consider using Add instead * Expected arguments: * 0: N-dimensional input * 1: bias vector */ #if NOT_EXCLUDED(OP_biasadd) DECLARE_CUSTOM_OP(biasadd, 2, 1, true, 0, 0); DECLARE_CUSTOM_OP(biasadd_bp, 3, 2, false, 0, 0); #endif /** * Returns a diagonal tensor with a given diagonal values. Given a diagonal, this operation returns a tensor with the diagonal and everything else padded with zeros. */ #if NOT_EXCLUDED(OP_diag) DECLARE_CUSTOM_OP(diag, 1, 1, false, 0, 0); #endif /** * Returns a diagonal tensor with a given diagonal values. Given a diagonal, this operation returns a tensor with the diagonal and everything else padded with zeros. */ #if NOT_EXCLUDED(OP_diag_part) DECLARE_CUSTOM_OP(diag_part, 1, 1, false, 0, 0); #endif /** * Returns a diagonal vector for any submatricies with in a given tensor. * It is an op inverse to matrix_set_giag. * Using input tensor as batched 2D diagonals flat them to vector (1D) with diagonal values. * * Input : batched tensor with rank >=2 * Output: tensor with rank lesser by 1 from input */ #if NOT_EXCLUDED(OP_matrix_diag_part) DECLARE_CUSTOM_OP(matrix_diag_part, 1, 1, false, 0, 0); #endif /** * QR decomposition: A = QR, where Q is ortogonal (Q * QT = I) and R is upper triangular. * For A (MxN) Q is M x M and R is (NxN). * * Input : * 0 - float (or complex float) tensor with shape {.,..,...,M,N} - batch of float matricies * * Output: * 0 - float tensor with shape {.,..,...,MxN} - batch of ortogonal matricies {Qs} * 1 - float tensor with shape {.,..,...,NxN} - batch of upper triangular matricies {Rs} */ #if NOT_EXCLUDED(OP_qr) DECLARE_CUSTOM_OP(qr, 1, 2, false, 0, 0); #endif /** * This operation takes 2 arrays: original values, and values to be excluded. And returns 2 arrays: values left after exclusion, and indices in original array for surivals. * Expected arguments: * 0: vector with original values * 1: vector with values to exclude */ #if NOT_EXCLUDED(OP_listdiff) DECLARE_CUSTOM_OP(listdiff, 2, 2, false, 0, 0); #endif /** * This operation applies Add operation to specific inputs wrt indices * Expected arguments: * input: array to be updated * indices: array containing indexes for first dimension of input * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_add) DECLARE_OP(scatter_add, 3, 1, true); #endif /** * This operation applies Subtract operation to specific inputs wrt indices * Expected arguments: * input: array to be updated * indices: array containing indexes for first dimension of input * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_sub) DECLARE_OP(scatter_sub, 3, 1, true); #endif /** * This operation applies Multiply operation to specific inputs wrt indices * Expected arguments: * input: array to be updated * indices: array containing indexes for first dimension of input * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_mul) DECLARE_OP(scatter_mul, 3, 1, true); #endif /** * This operation applies Divide operation to specific inputs wrt indices * Expected arguments: * input: array to be updated * indices: array containing indexes for first dimension of input * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_div) DECLARE_OP(scatter_div, 3, 1, true); #endif /** * This operation applies Assign operation to specific inputs wrt indices * Expected arguments: * input: array to be updated * indices: array containing indexes for first dimension of input * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_upd) DECLARE_OP(scatter_upd, 3, 1, true); #endif /** * This operation applies Max operation to specific inputs through given indices * Expected arguments: * input: array to be updated * indices: array containing indexes for first dimension of input * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_max) DECLARE_OP(scatter_max, 3, 1, true); #endif /** * This operation applies Min operation to specific inputs through given indices * Expected arguments: * input: array to be updated * indices: array containing indexes for first dimension of input * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_min) DECLARE_OP(scatter_min, 3, 1, true); #endif /** * This operation scatter "updates" elements into new output array according to given "indices" * Expected arguments: * indices: array containing elements/slices indexes of output array to put "updates" elements into, the rest output elements will be zeros * updates: array containing elements to be inserted into output array * shape: contains shape of output array */ #if NOT_EXCLUDED(OP_scatter_nd) DECLARE_CUSTOM_OP(scatter_nd, 3, 1, false, 0, 0); #endif /** * This operation scatter "updates" elements into input array along given "indices" * Expected arguments: * input: array to be updated * indices: array containing elements/slices indexes of input array to put "updates" elements into * updates: array containing elements to be inserted into input array */ #if NOT_EXCLUDED(OP_scatter_nd_update) DECLARE_OP(scatter_nd_update, 3, 1, true); #endif /** * This operation adds "updates" elements to input array along given "indices" * Expected arguments: * input: array to be updated * indices: array containing elements/slices indexes of input array to add "updates" elements to * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_add) DECLARE_OP(scatter_nd_add, 3, 1, true); #endif /** * This operation subtract "updates" elements from input array along given "indices" * Expected arguments: * input: array to be updated * indices: array containing elements/slices indexes of input array to subtract "updates" elements from * updates: array containing elements to be interfered with input */ #if NOT_EXCLUDED(OP_scatter_sub) DECLARE_OP(scatter_nd_sub, 3, 1, true); #endif /** * This operation takes input's shape, and returns new NDArray filled with specified value * Expected arguments: * input: N-dimensional array * * T args: * 0: scalar value, used to fill NDArray */ #if NOT_EXCLUDED(OP_fill_as) DECLARE_CONFIGURABLE_OP(fill_as, 1, 1, true, 1, 0); #endif /** * This operation applies element-wise rint (round to integral value) operation */ #if NOT_EXCLUDED(OP_rint) DECLARE_OP(rint, 1, 1, true); #endif /** * This operation returns unique elements from input array as vector, and their original indices in input array * Expected input: * input: N-dimensional array */ #if NOT_EXCLUDED(OP_unique) DECLARE_CUSTOM_OP(unique, 1, 2, false, 0, 0); #endif /** * This operation returns 3 1D arrays for given 1D array with unique element count and indexes * input: * 0 - 1D array * * output: * 0 - 1D array with unique values * 1 - 1D array with ids for values in array above * 2 - 1D array with counts for values in array above */ #if NOT_EXCLUDED(OP_unique_with_counts) DECLARE_CUSTOM_OP(unique_with_counts, 1, 3, false, 0, 0); #endif /** * This operation splits input NDArray into multiple TADs along given dimensions * Expected arguments: * input: N-dimensional array * * Int args: * 0..: TAD axis */ #if NOT_EXCLUDED(OP_tear) DECLARE_CUSTOM_OP(tear, 1, -1, false, 0, -1); #endif /** * This op does the same as tear, just uses different input format: * @tparam T */ #if NOT_EXCLUDED(OP_unstack) DECLARE_CUSTOM_OP(unstack, 1, -1, false, 0, 1); #endif /** * This operation extracts a strided (optionally) slice from a tensor, */ #if NOT_EXCLUDED(OP_strided_slice) DECLARE_CUSTOM_OP(strided_slice, 1, 1, false, 0, 5); // TODO: new op type needed. that returns VIEW DECLARE_CUSTOM_OP(strided_slice_bp, 2, 1, false, 0, 5); #endif /** * This operation extracts a slice from a tensor. * */ #if NOT_EXCLUDED(OP_slice) DECLARE_CUSTOM_OP(slice, 1, 1, false, 0, -2); DECLARE_CUSTOM_OP(slice_bp, 2, 1, false, 0, -2); #endif /** * This operation generate sequences. Basically from......to, with step used as increment. * Expected arguments: * start: optional scalar with starting value * stop: optional scalar with end value * step: optional scalar witn step value * * Int args: (optional) * 0: optional scalar with starting value * 1: optional scalar with end value * 1: optional scalar witn step value * * T args: (optional) * 0: optional scalar with starting value * 1: optional scalar with end value * 1: optional scalar witn step value */ #if NOT_EXCLUDED(OP_range) DECLARE_CUSTOM_OP(range, -2, 1, false, -2, -2); #endif /** * This operation return one-hot encoded n-dimensional array * Expected arguments: * input: N-dimensional array * * T args: * 0: 'on' value * 1: 'off' value * * Int args: * 0: depth * 1: axis */ #if NOT_EXCLUDED(OP_onehot) DECLARE_CUSTOM_OP(onehot, 1, 1, false, -2, -2); #endif /** * This operation calculate the confusion matrix for a * pair of prediction and label 1-D arrays. * Expected arguments: * Input arrays: * 0 - predictions: 1-D array * 1 - labels: 1-D array * 2 - weights : optional * Int args: * 0 - num_classes: optional * */ #if NOT_EXCLUDED(OP_confusion_matrix) DECLARE_CUSTOM_OP(confusion_matrix, 2, 1, false, 0, -2); #endif /** * This operation stacks a list of rank tensors into one rank-(R+1) tensor. * Expected arguments: * 0...: N-Dimensional arrays to stack * */ #if NOT_EXCLUDED(OP_stack) DECLARE_CUSTOM_OP(stack, -1, 1, false, 0, 0); #endif /** * This operation returns length of input array * Expected arguments: * input: N-dimensional array * * TODO: make this operation reduction, to allow TAD -> size */ #if NOT_EXCLUDED(OP_size) DECLARE_CUSTOM_OP(size, 1, 1, false, 0, 0); // add DeclarableScalarOp? #endif /** * This operation returns rank of input array as scalar value. */ #if NOT_EXCLUDED(OP_rank) DECLARE_CUSTOM_OP(rank, 1, 1, false, 0, 0); // ^ #endif #if NOT_EXCLUDED(OP_broadcastgradientargs) DECLARE_OP(broadcastgradientargs, 2, 2, true); #endif /** * This operation takes input's shape, and returns new NDArray filled with zeros * Expected arguments: * input: N-dimensional array * */ #if NOT_EXCLUDED(OP_zeros_as) DECLARE_CUSTOM_OP(zeros_as, 1, 1, false, 0, 0); #endif /** * This operation takes input's shape, and returns new NDArray filled with ones * Expected arguments: * input: N-dimensional array * */ #if NOT_EXCLUDED(OP_ones_as) DECLARE_CUSTOM_OP(ones_as, 1, 1, false, 0, 0); #endif /** * This operation applies element-wise pow(x, 2) to the given input * Expected arguments: * input: N-Dimensional array */ #if NOT_EXCLUDED(OP_square) DECLARE_OP(square, 1, 1, true); #endif /** * This op calculates Hurwitz zeta function zeta(x, q) = sum_{n=0}^{inf} (q + n)^{-x} * Implementation is based on Euler-Maclaurin summation formula * * Input arrays: * x: define power {-x}, must be > 1, type float. * q: define summand in denominator, must be > 0, type float. * * Output array: * 0: corresponding values of Hurwitz zeta function * * Two input and one output arrays must have the same shape */ #if NOT_EXCLUDED(OP_zeta) DECLARE_CONFIGURABLE_OP(zeta, 2, 1, false, 0, 0); #endif /** * This op calculates polygamma function psi^(n)(x). Implementation is based on serial representation written in * terms of the Hurwitz zeta function: polygamma = (-1)^{n+1} * n! * zeta(n+1, x). * * Input arrays: * 0: n - define derivative order (n+1), type integer (however currently is implemented as float casted to integer) * 1: x - abscissa points where to evaluate the polygamma function, type float * * Output array: * 0: values of polygamma function at corresponding x, type float * * Two input and one output arrays have the same shape */ #if NOT_EXCLUDED(OP_polygamma) DECLARE_CONFIGURABLE_OP(polygamma, 2, 1, false, 0, 0); #endif /** * This op calculates lgamma function lgamma(x) = log(Gamma(x)) * * Input arrays: * 0: x - input matrix * * Output array: * 0: log of Gamma(x) * */ #if NOT_EXCLUDED(OP_lgamma) DECLARE_OP(lgamma, 1, 1, true); #endif /** * This op calculates digamma function psi(x) = derivative of log(Gamma(x)) * * Input arrays: * 0: x - abscissa points where to evaluate the digamma function, type float * * Output array: * 0: values of digamma function at corresponding x, type float * */ #if NOT_EXCLUDED(OP_digamma) DECLARE_CONFIGURABLE_OP(digamma, 1, 1, false, 0, 0); #endif /** * This operation takes shape as first argument, and returns new NDArray filled with specific scalar value. * Input arrays: * 0 - shape vector * 1 - optional scalar NDArray * * T arguments: * 0 - optional scalar value * */ #if NOT_EXCLUDED(OP_fill) DECLARE_CUSTOM_OP(fill, 1, 1, false, -2, 0); #endif /** * This operation splits given NDArray into chunks of specific size, along given dimension * Input arrays: * 0 - input array * 1 - array of sizes * 2 - optional axis * * Integer arguments: * 0 - optional axis * */ #if NOT_EXCLUDED(OP_split_v) DECLARE_CUSTOM_OP(split_v, 2, -1, false, 0, -2); #endif /** * This operation splits given NDArray into chunks of specific size, along given dimension * 0 - input array * 1 - optional axis * * Integer arguments: * 0 - number of splits * 1 - optional axis */ #if NOT_EXCLUDED(OP_split) DECLARE_CUSTOM_OP(split, 1, -1, false, 0, 1); #endif /** * This operation adjusts image hue by delta * Input arrays: * 0 - input array with rank >= 3, must have at least one dimension equal 3, that is dimension containing channels. * 1 - optional argument, input scalar-array containing delta * * T arguments: * 0 - optional argument, delta value * * Int arguments: * 0 - optional argument, corresponds to dimension with 3 channels */ #if NOT_EXCLUDED(OP_adjust_hue) DECLARE_CONFIGURABLE_OP(adjust_hue, 1, 1, true, 0, 0); #endif /** * This operation adjusts image saturation by delta * Input arrays: * 0 - input array with rank >= 3, must have at least one dimension equal 3, that is dimension containing channels. * 1 - optional argument, input scalar-array containing saturation factor * * T arguments: * 0 - optional argument, saturation factor * * Int arguments: * 0 - optional argument, corresponds to dimension with 3 channels */ #if NOT_EXCLUDED(OP_adjust_saturation) DECLARE_CONFIGURABLE_OP(adjust_saturation, 1, 1, true, 0, 0); #endif /** * This operation adjusts image contrast by given factor ( z = (x - mean) * factor + mean ) * Input arrays: * 0 - input array with rank >= 3, must have last one dimension equal 3, that is dimension containing channels. * 1 - optional argument, input scalar-array containing saturation contrast factor * * T arguments: * 0 - optional argument, contrast factor * */ #if NOT_EXCLUDED(OP_adjust_contrast) DECLARE_CONFIGURABLE_OP(adjust_contrast, 1, 1, true, 0, 0); DECLARE_CONFIGURABLE_OP(adjust_contrast_v2, 1, 1, true, 0, 0); #endif /** * This operation rearranges data from depth into blocks of spatial data. This is the reverse transformation * of space_to_depth op. This op output is a copy of the input tensor where values from the depth dimension * are moved in spatial blocks to the height and width dimensions. Int attr 0 indicates the input * block size and how the data is moved. * Input: * 0 - 4D tensor on given type * Output: * 0 - 4D tensor of given type and proper shape * * Int arguments: * 0 - block size * 1 - output data format: 0 ("NHWC"): shape{ batch, height, width, channels } * 1 ("NCHW"): shape{ batch, channels, height, width } * 2 ("NCHW_VECT_C"): int8 shape{ batch, channels / 4, height, width, 4 } * optional (default 0) */ #if NOT_EXCLUDED(OP_depth_to_space) DECLARE_CUSTOM_OP(depth_to_space, 1, 1, false, 0, -1); #endif /** * This operation rearranges blocks of spatial data, into depth.This op output is a copy of the input tensor * where values from the height and width dimensions are moved to the depth dimension. Int attr 0 indicates * the input block size. * * Input: * - 4D tensor of given type * Output: * - 4D tensor * * Int arguments: * 0 - block size * 1 - output data format: 0 ("NHWC"): shape{ batch, height, width, channels } * 1 ("NCHW"): shape{ batch, channels, height, width } * 2 ("NCHW_VECT_C"): int8 shape{ batch, channels / 4, height, width, 4 } * optional (default 0) * */ #if NOT_EXCLUDED(OP_space_to_depth) DECLARE_CUSTOM_OP(space_to_depth, 1, 1, false, 0, -1); #endif /** * This op calculates cross-product between input arguments * Input arguments * 0 - vector or tensor A * 1 - vector or tensor B */ #if NOT_EXCLUDED(OP_cross) DECLARE_OP(cross, 2, 1, false); #endif /** * Zero-pads and then rearranges (permutes) blocks of spatial data into batch. More specifically, this op * outputs a copy of the input tensor where values from the height and width dimensions are moved to the * batch dimension. After the zero-padding, both height and width of the input must be divisible by the block * size. * * Inputs: * 0 - input tensor * 1 - 2D paddings tensor (shape {M, 2}) * * Output: * - result tensor * * Int args: * 0 - block size (M) * */ #if NOT_EXCLUDED(OP_space_to_batch) DECLARE_CUSTOM_OP(space_to_batch, 2, 1, false, 0, 1); #endif /* * This operation divides "spatial" dimensions [1, ..., M] of the input into a grid of blocks of shape * block_shape, and interleaves these blocks with the "batch" dimension (0) such that in the output, * the spatial dimensions [1, ..., M] correspond to the position within the grid, and the batch dimension * combines both the position within a spatial block and the original batch position. Prior to division into * blocks, the spatial dimensions of the input are optionally zero padded according to paddings. * * Inputs: * 0 - input (N-D tensor) * 1 - block_shape - int 1D tensor with M length * 2 - paddings - int 2D tensor with shape {M, 2} * * Output: * - N-D tensor with the same type as input 0. * * */ #if NOT_EXCLUDED(OP_space_to_batch_nd) DECLARE_CUSTOM_OP(space_to_batch_nd, 3, 1, false, 0, 0); #endif /** * * */ #if NOT_EXCLUDED(OP_batch_to_space) DECLARE_CUSTOM_OP(batch_to_space, 2, 1, false, 0, 1); #endif #if NOT_EXCLUDED(OP_batch_to_space_nd) DECLARE_CUSTOM_OP(batch_to_space_nd, 3, 1, false, 0, 0); #endif /** * top_k operation returns a vector of k top values for * given NDArray as tensor with default boolean (true) * as sort for result index array * will be sorted by the values in descending order. * The first parameter is a NDArray for working. * The second is k (default 1) - optional * The third is boolean value(default is true) (0 - as is, 1 - sorted by value) optional */ #if NOT_EXCLUDED(OP_top_k) DECLARE_CUSTOM_OP(top_k, 1, 2, false, 0, -1); #endif /** * in_top_k operation returns a vector of k boolean values for * given NDArray as 2D matrix of predicted in the NDArray k top values * The first parameter is a NDArray of predicted values (2d array). * The second is NDArray as vector of indeces k top values will be search. * The third is k */ #if NOT_EXCLUDED(OP_in_top_k) DECLARE_CUSTOM_OP(in_top_k, 2, 1, true, 1, 1); #endif /** * moments operation calculate a mean and variation for given NDArray * with reduce a result according to axis array given. * For full axis the result is both mean and variance of all members in array. * Otherwise there are two NDArrays with means and variances for * Axes can be put as the second NDArray or as int vector. * * the optional flag "keep_dims" can be set as T param */ #if NOT_EXCLUDED(OP_moments) DECLARE_CUSTOM_OP(moments, 1, 2, false, 0, -2); #endif /** * embedding_lookup - search for submatrices in given matrix and retunts them * accordingly to index array given. */ #if NOT_EXCLUDED(OP_embedding_lookup) DECLARE_CUSTOM_OP(embedding_lookup, 2, 1, false, 0, 1); #endif /** * dynamic_partition - partition a input tensor onto num_partitions * accordingly to index array given. * * the first param - NDArray to be partitioned. * the second param - index array * the third param (integer param) - num or partitions. * * returns a num of NDArrays as output */ #if NOT_EXCLUDED(OP_dynamic_partition) DECLARE_CUSTOM_OP(dynamic_partition, 2, 1, false, 0, 1); #endif #if NOT_EXCLUDED(OP_dynamic_partition_bp) DECLARE_CUSTOM_OP(dynamic_partition_bp, 3, 2, false, 0, 1); #endif /** * dynamic_stitch - merge partitions from the second param a input tensor * into a single tensor accordingly to index array given. * * the first param - index array * the second params - tensors to be merged * * returns a num of NDArrays as output * * the operation is inversion od dynamic_partition */ #if NOT_EXCLUDED(OP_dynamic_stitch) DECLARE_CUSTOM_OP(dynamic_stitch, 2, 1, false, 0, 0); #endif /** * zero_fraction op. * compute a fraction of zeros in given array * * input param - an array (tensor) * output value - a real number with given type (e.g. float or double) */ #if NOT_EXCLUDED(OP_zero_fraction) DECLARE_CUSTOM_OP(zero_fraction, 1, 1, false, 0, 0); #endif /** * xw_plus_b op. * multiply two first matrices and add third vector to each row of result * * input params: * - 2D matrix NxM * - 2D matrix MxN * - 1D vector with N elements * output value - 2D matrix NxN as multiply of matrixes and add vector * Int args: * 0 - optional switcher of weights format, if int arg == 1 - mkldnn, else mmul */ #if NOT_EXCLUDED(OP_xw_plus_b) DECLARE_CUSTOM_OP(xw_plus_b, 3, 1, false, 0, 0); DECLARE_CUSTOM_OP(xw_plus_b_bp, 4, 3, false, 0, 0); #endif /** * This operation is missed due it simplicy. * Input and output params are the same after operation. * Input - NDArray, output - NDArray with the same shape. */ #if NOT_EXCLUDED(OP_stop_gradient) DECLARE_OP(stop_gradient, 1, 1, true); #endif #if NOT_EXCLUDED(OP_parallel_stack) DECLARE_CUSTOM_OP(parallel_stack, -1, 1, false, 0, 0); #endif /** * normalize_moments operation normalize already calculated mean and variation * accordingly to shift and count. * input params: * - count of data * - tensor with mean * - tensor with variance (the same shape as before) * * - optional floating point param shift. * * returns a normalized pair mean and variance with the same shapes as input */ #if NOT_EXCLUDED(OP_normalize_moments) DECLARE_CUSTOM_OP(normalize_moments, 3, 2, false, 1, 0); #endif /** * sufficient_statistics operation return calculated mean and variation with data count. * this operation is invert for moments * accordingly to shift and count. * input params: * - input tensor * - axes vector * * * - optional floating point param shift. * - optional int (as bool) keep_dimension * * returns four tensors: * - scalar tensor (data count) * - sum elements of input (accross axises) * - sum of squares of input (accross axises) * - shift (if was given by input floating param) */ #if NOT_EXCLUDED(OP_sufficient_statistics) DECLARE_CUSTOM_OP(sufficient_statistics, 2, 3, false, 0, 0); #endif /** * This op calculates weighted logarithmic loss of input * Input arguments * 0 - target * 1 - input * 2 - weights (scalar or vector with same as last dimension) * * return value - a tensor with the same shape as target or input */ #if NOT_EXCLUDED(OP_weighted_cross_entropy_with_logits) DECLARE_OP(weighted_cross_entropy_with_logits, 3, 1, true); #endif /** * This op calculates dropout of input * Input arguments * 0 - input tensor * 1 - noise_shape - (vector with shape to reduce) - optional * * int parameter - seed for random numbers * T parameter - probability (should be between 0 and 1) * return value - a tensor with the same shape as target or input */ #if NOT_EXCLUDED(OP_dropout) DECLARE_CONFIGURABLE_OP(dropout, 1, 1, true, 1, 1); #endif #if NOT_EXCLUDED(OP_dropout_bp) DECLARE_CONFIGURABLE_OP(dropout_bp, 2, 1, false, 1, 1); #endif /* Calculates alpha weighted dropout T params: 0 - drop probability 1 - alpha value 2 - alpha' value 3 - beta value */ #if NOT_EXCLUDED(OP_alpha_dropout_bp) DECLARE_CONFIGURABLE_OP(alpha_dropout_bp, 2, 1, false, 4, 1); #endif /** * bincount operation return a vector with element counted. * * input params: * - input tensor - only int part are accepted * - weights - the same shape tensor with integer weights for element (optional) * default weight - 1,1,1..,1 for all values in the tensor * * optional ints: * - min_length - zero or greater * - max_length - between min_length and max(input) + 1 * * returns four tensors: * - vector tensor with length to min(max_len, max(input) + 1) with count * of values in indexed place * */ #if NOT_EXCLUDED(OP_bincount) DECLARE_CUSTOM_OP(bincount, 1, 1, false, 0, 0); #endif /** * broadcast_dynamic_shape op. * * input params: * 0 - the first shape (vector with shape) * 1 - the second shape (vector with shape) * * return value: * vector with broadcasted shape */ #if NOT_EXCLUDED(OP_broadcast_dynamic_shape) DECLARE_CUSTOM_OP(broadcast_dynamic_shape, 2, 1, false, 0, 0); #endif /** * matrix_determinant op. * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * M) * * return value: * tensor with dimension (x * y * z * ::: *) with determinant for all * M x M matricies */ #if NOT_EXCLUDED(OP_matrix_determinant) DECLARE_CUSTOM_OP(matrix_determinant, 1, 1, false, 0, 0); #endif /** * log_matrix_determinant op. * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * M) * * return value: * tensor with dimension (x * y * z * ::: *) with log determinant for all * M x M matricies */ #if NOT_EXCLUDED(OP_log_matrix_determinant) DECLARE_CUSTOM_OP(log_matrix_determinant, 1, 1, false, 0, 0); #endif /** * logdet op. Logarithm of the determinant of hermitian positive matricies. * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * M) * * return value: * tensor with dimension (x * y * z * ::: *) with log determinant for all * M x M matricies */ #if NOT_EXCLUDED(OP_logdet) DECLARE_CUSTOM_OP(logdet, 1, 1, false, 0, 0); #endif /** * matrix_solve_ls op (lstsq) - solves one or more linear least-squares problems. * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * N) - left parts of equations * 1 - the tensor with dimension (x * y * z * ::: * M * K) - right parts of equations * * float args: * 0 - l2_regularizer (default 0. and only for 0 implemented) * * boolean args: * 0 - fast - default is true (optional) - use Cholesky decomposition instead QR decomposition of matricies. * * return value: * tensor with dimension (x * y * z * ::: * N * K) with solutions * */ #if NOT_EXCLUDED(OP_lstsq) DECLARE_CUSTOM_OP(lstsq, 2, 1, false, 0, 0); #endif /* solve_ls - analog of lstsq op with another solution approach * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * N) - left parts of equations * 1 - the tensor with dimension (x * y * z * ::: * M * K) - right parts of equations * * float args: * 0 - l2_regularizer (default 0. and only for 0 implemented) * * boolean args: * 0 - fast - default is true (optional) - use Cholesky decomposition instead QR decomposition of matricies. * * return value: * tensor with dimension (x * y * z * ::: * N * K) with solutions * * Note: if fast is false - then l2_regularizer arg is ignored and used lstsq method due QR decomposition * */ #if NOT_EXCLUDED(OP_solve_ls) DECLARE_CUSTOM_OP(solve_ls, 2, 1, false, 0, 0); #endif /** * matrix_inverse op. - make inverse for all 2D square matricies found in the input tensor * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * M) * * return value: * tensor with dimension (x * y * z * ::: * M * M) with inverse M x M matricies in it */ #if NOT_EXCLUDED(OP_matrix_inverse) DECLARE_OP(matrix_inverse, 1, 1, true); #endif /** * triangular_solve op. - reverse Gaussian method for solve systems of linear equations. * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * M) - left parts of equations * 1 - the tensor with dimension (x * y * z * ::: * M * K) - right parts of equations * * boolean args: * 0 - lower - default is true (optional) - left part is lower triangular matrix * 1 - adjoint - default is false (optional) - indicate input matrix or its adjoint (hermitian addition) should be used * * return value: * tensor with dimension (x * y * z * ::: * M * K) with solutions * */ #if NOT_EXCLUDED(OP_triangular_solve) DECLARE_CUSTOM_OP(triangular_solve, 2, 1, false, 0, 0); #endif /** * solve op. - solve systems of linear equations - general method. * * input params: * 0 - the tensor with dimension (x * y * z * ::: * M * M) - left parts of equations * 1 - the tensor with dimension (x * y * z * ::: * M * K) - right parts of equations * * boolean args: * 0 - adjoint - default is false (optional) - indicate input matrix or its adjoint (hermitian addition) should be used * * return value: * tensor with dimension (x * y * z * ::: * M * K) with solutions * */ #if NOT_EXCLUDED(OP_solve) DECLARE_CUSTOM_OP(solve, 2, 1, true, 0, 0); #endif /** * lu op. - make LUP decomposition of given batch of 2D square matricies * * input params: * 0 - float tensor with dimension (x * y * z * ::: * M * M) * * return value: * 0 - float tensor with dimension (x * y * z * ::: * M * M) with LU M x M matricies in it * 1 - int (32 or 64) batched vector of permutations with length M - shape (x * y * z * ::: * M) * * int argument: * 0 - data type of output permutaion vector (int32 or int64), optional, default INT32 */ #if NOT_EXCLUDED(OP_matrix_inverse) DECLARE_CUSTOM_OP(lu, 1, 2, false, 0, 0); #endif /** * sequence_mask op. - make mask for given tensor filled by (j > x[i_1, i_2,...,i_n]) -> z[i_1, i_2,...,i_n,j] * * input params: * 0 - the ND-tensor filled by integer-like values * * optional int param - maxlength (maxlength >= max(x)). By default maxlength = max(x). * return value: * (N+1)D tensor filled by 0 and 1 accordingly the mask */ #if NOT_EXCLUDED(OP_sequence_mask) DECLARE_CUSTOM_OP(sequence_mask, 1, 1, false, 0, 0); #endif /** * segment_max op. - make a tensor filled by max values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * return value: * tensor with max values according to indices sets. */ #if NOT_EXCLUDED(OP_segment_max) DECLARE_CUSTOM_OP(segment_max, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_segment_max_bp) DECLARE_CUSTOM_OP(segment_max_bp, 3, 2, false, 0, 0); #endif /** * segment_min op. - make a tensor filled by min values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * return value: * tensor with min values according to indices sets. */ #if NOT_EXCLUDED(OP_segment_min) DECLARE_CUSTOM_OP(segment_min, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_segment_min_bp) DECLARE_CUSTOM_OP(segment_min_bp, 3, 2, false, 0, 0); #endif /** * segment_sum op. - make a tensor filled by sum of values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * return value: * tensor with sum of values according to indices sets. */ #if NOT_EXCLUDED(OP_segment_sum) DECLARE_CUSTOM_OP(segment_sum, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_segment_sum_bp) DECLARE_CUSTOM_OP(segment_sum_bp, 3, 2, false, 0, 0); #endif /** * segment_prod op. - make a tensor filled by product of values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * return value: * tensor with product of values according to indices sets. */ #if NOT_EXCLUDED(OP_segment_prod) DECLARE_CUSTOM_OP(segment_prod, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_segment_prod_bp) DECLARE_CUSTOM_OP(segment_prod_bp, 3, 2, false, 0, 0); #endif /** * segment_mean op. - make a tensor filled by average of values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * return value: * tensor with average of values according to indices sets. */ #if NOT_EXCLUDED(OP_segment_mean) DECLARE_CUSTOM_OP(segment_mean, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_segment_mean_bp) DECLARE_CUSTOM_OP(segment_mean_bp, 3, 2, false, 0, 0); #endif /** * unsorted_segment_max op. - make a tensor filled by max values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * return value: * tensor with max values according to indices sets. */ #if NOT_EXCLUDED(OP_unsorted_segment_max) DECLARE_CUSTOM_OP(unsorted_segment_max, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_unsorted_segment_max_bp) DECLARE_CUSTOM_OP(unsorted_segment_max_bp, 3, 2, false, 0, 1); #endif /** * unsorted_segment_min op. - make a tensor filled by min values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * integer param: * 0 - num of segments * * return value: * tensor with min values according to indices sets. */ #if NOT_EXCLUDED(OP_unsorted_segment_min_bp) DECLARE_CUSTOM_OP(unsorted_segment_min, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_unsorted_segment_min_bp) DECLARE_CUSTOM_OP(unsorted_segment_min_bp, 3, 2, false, 0, 1); #endif /** * unsorted_segment_sum op. - make a tensor filled by sum of values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * integer param: * 0 - num of segments * * return value: * tensor with sum of values according to indices sets. */ #if NOT_EXCLUDED(OP_unsorted_segment_sum) DECLARE_CUSTOM_OP(unsorted_segment_sum, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_unsorted_segment_sum_bp) DECLARE_CUSTOM_OP(unsorted_segment_sum_bp, 3, 2, false, 0, 1); #endif /** * unsorted_segment_prod op. - make a tensor filled by product of values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * integer param: * 0 - num of segments * * return value: * tensor with product of values according to indices sets. */ #if NOT_EXCLUDED(OP_unsorted_segment_prod) DECLARE_CUSTOM_OP(unsorted_segment_prod, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_unsorted_segment_prod_bp) DECLARE_CUSTOM_OP(unsorted_segment_prod_bp, 3, 2, false, 0, 1); #endif /** * unsorted_segment_mean op. - make a tensor filled by average of values according to index tensor given. * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * integer param: * 0 - num of segments * * return value: * tensor with average of values according to indices sets. */ #if NOT_EXCLUDED(OP_unsorted_segment_mean) DECLARE_CUSTOM_OP(unsorted_segment_mean, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_unsorted_segment_mean_bp) DECLARE_CUSTOM_OP(unsorted_segment_mean_bp, 3, 2, false, 0, 1); #endif /** * unsorted_segment_sqrt_n op. - computes the sum along segments of a tensor divided by the sqrt(N). * * input params: * 0 - the tensor with data; * 1 - the tensor with indices. * * integer param: * 0 - num of segments * * return value: * tensor with average of values according to indices sets. */ #if NOT_EXCLUDED(OP_unsorted_segment_sqrt) DECLARE_CUSTOM_OP(unsorted_segment_sqrt_n, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_unsorted_segment_sqrt_n_bp) DECLARE_CUSTOM_OP(unsorted_segment_sqrt_n_bp, 3, 2, false, 0, 1); #endif /** * extract_image_patches op - Extract patches from images and put them in the "depth" output dimension. * * input params: * 0 - images tensor (4D) * * int params: * 0 - ksize_rows * 1 - ksize_cols * 2 - strides_rows * 3 - strides_cols * 4 - rates_rows * 5 - rates_cols * 6 - padding_type - 0 - equiv 'VALID', 1 - 'SAME' */ #if NOT_EXCLUDED(OP_extract_image_patches) DECLARE_CUSTOM_OP(extract_image_patches, 1, 1, false, 0, 7); #endif /** * draw_bounding_boxes op - modified input image with given colors exept given boxes. * * input params: * 0 - images tensor (4D) with shape {batch, width, height, channels}, where channes is 1 (BW image), * 3 (RGB) or 4 (RGBA) * 1 - boxes tensor (3D) with shape {batch, number_of_boxes, 4} where last dimension encoded as * (y_min, x_min, y_max, x_max), all values in between 0. and 1. * 2 - colours tensor (2D) with shape {number_of_boxes, channels} -- bordering color set (palette) * * output: * 0 - 4D tensor with same shape as images (input 0) */ #if NOT_EXCLUDED(OP_draw_bounding_boxes) DECLARE_OP(draw_bounding_boxes, 3, 1, true); #endif /** * roll - op porting from numpy (https://docs.scipy.org/doc/numpy-1.14.0/reference/generated/numpy.roll.html) * * input params: * 0 - NDArray * * int params: * 0 - shift * 1 - axe 1 * 2 - axe 2 * ... * N - axe N * * All axes are optional and should be between 0 and input->rankOf(). Of course, all axes can be repeated. * * output: * 0 - NDArray with the same shape as input. */ #if NOT_EXCLUDED(OP_roll) DECLARE_CONFIGURABLE_OP(roll, 1, 1, true, 0, 1); #endif /** * lin_space - op porting from TF (https://www.tensorflow.org/api_docs/python/tf/lin_space) * * optional input params: * 0 - startVal - NDArray scalar (float point) * 1 - finishVal - NDArray scalar (float point) * 2 - numOfElements - NDArray scalar (integer) * Optional: * T args * 0 - startVal * 1 - finishVal] * 2 - numOfElements * output: * 0 - 1D NDArray with the same type as input and length as given with numOfElements param. */ #if NOT_EXCLUDED(OP_lin_space) DECLARE_CUSTOM_OP(lin_space, 0, 1, false, 0, 0); #endif /** * reduction_sum - tf.reduction_sum operation * * input params: * 0 - NDArray * * T_ARG param (optional): * 0 - keep_dims != 0. * * int params (optional): * 0 - axe 1 * 1 - axe 2 * ... * N-1 axe N * * All axes are optional and should be between 0 and input->rankOf() - 1 * * output: * 0 - NDArray with reduces shape accordingly to axes (the scalar in default case). */ #if NOT_EXCLUDED(OP_reduce_sum) DECLARE_CUSTOM_OP(reduce_sum, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_sum_bp) DECLARE_CUSTOM_OP(reduce_sum_bp, 2, 1, false, 0, 0); #endif /** * reduction_prod - tf.reduction_prod operation * * input params: * 0 - NDArray * * T_ARG param (optional): * 0 - keep_dims != 0. * * int params (optional): * 0 - axe 1 * 1 - axe 2 * ... * N-1 axe N * * All axes are optional and should be between 0 and input->rankOf() - 1 * * output: * 0 - NDArray with reduces shape accordingly to axes (the scalar in default case). */ #if NOT_EXCLUDED(OP_reduce_prod) DECLARE_CUSTOM_OP(reduce_prod, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_prod_bp) DECLARE_CUSTOM_OP(reduce_prod_bp, 2, 1, false, 0, 0); #endif /** * This op calculates min of elements along given dimensions * * input array: * x: tensor to calculate mins for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * * int arguments: * list of integers - dimensions to calculate min along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated mins */ #if NOT_EXCLUDED(OP_reduce_min) DECLARE_CUSTOM_OP(reduce_min, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_min_bp) DECLARE_CUSTOM_OP(reduce_min_bp, 2, 1, false, 0, 0); #endif /** * This op calculates max of elements along given dimensions * * input array: * x: tensor to calculate maxes for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * * int arguments: * list of integers - dimensions to calculate max along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated maxes */ #if NOT_EXCLUDED(OP_reduce_max) DECLARE_CUSTOM_OP(reduce_max, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_max_bp) DECLARE_CUSTOM_OP(reduce_max_bp, 2, 1, false, 0, 0); #endif /** * This op calculates norm1 of elements along given dimensions * * input array: * x: tensor to calculate norm1 for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * * int arguments: * list of integers - dimensions to calculate norm1 along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated norm1 */ #if NOT_EXCLUDED(OP_reduce_norm1) DECLARE_CUSTOM_OP(reduce_norm1, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_norm1_bp) DECLARE_CUSTOM_OP(reduce_norm1_bp, 2, 1, false, 0, 0); #endif /** * This op calculates norm2 of elements along given dimensions * * input array: * x: tensor to calculate norm2 for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * * int arguments: * list of integers - dimensions to calculate norm2 along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated norm2 */ #if NOT_EXCLUDED(OP_reduce_norm2) DECLARE_CUSTOM_OP(reduce_norm2, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_norm2_bp) DECLARE_CUSTOM_OP(reduce_norm2_bp, 2, 1, false, 0, 0); #endif /** * This op calculates squared norm of elements along given dimensions * * input array: * x: tensor to calculate squared norm for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * * int arguments: * list of integers - dimensions to calculate squared norm along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated norm */ #if NOT_EXCLUDED(OP_reduce_sqnorm) DECLARE_CUSTOM_OP(reduce_sqnorm, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_sqnorm_bp) DECLARE_CUSTOM_OP(reduce_sqnorm_bp, 2, 1, false, 0, 0); #endif /** * This op calculates norm max of elements along given dimensions * * input array: * x: tensor to calculate norm max for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * * int arguments: * list of integers - dimensions to calculate norm max along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated norm */ #if NOT_EXCLUDED(OP_reduce_norm_max) DECLARE_CUSTOM_OP(reduce_norm_max, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_norm_max_bp) DECLARE_CUSTOM_OP(reduce_norm_max_bp, 2, 1, false, 0, 0); #endif /** * This op calculates mean of elements along given dimensions * * input array: * x: tensor to calculate mean for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * * int arguments: * list of integers - dimensions to calculate mean along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated means */ #if NOT_EXCLUDED(OP_reduce_mean) DECLARE_CUSTOM_OP(reduce_mean, 1, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_reduce_mean_bp) DECLARE_CUSTOM_OP(reduce_mean_bp, 2, 1, false, 0, 0) #endif /** * This op calculates sample variance of elements along given dimensions * * input array: * x: tensor to calculate mean for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * biasCorrected - if non zero, then bias correction will be applied, default value is zero * * int arguments: * list of integers - dimensions to calculate mean along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated means */ DECLARE_CUSTOM_OP(reduce_variance, 1, 1, false, 0, 0); DECLARE_CUSTOM_OP(reduce_variance_bp, 2, 1, false, 0, 0) /** * This op calculates sample standard deviation of elements along given dimensions * * input array: * x: tensor to calculate mean for * * float arguments: * keepDims: if non zero, then keep reduced dimensions with length = 1, default value is zero * biasCorrected - if non zero, then bias correction will be applied, default value is zero * * int arguments: * list of integers - dimensions to calculate mean along, default corresponds to empty list in which case calculation is performed for all dimensions and scalar is returned * * output array: * reduced tensor with calculated means */ DECLARE_CUSTOM_OP(reduce_stdev, 1, 1, false, 0, 0); DECLARE_CUSTOM_OP(reduce_stdev_bp, 2, 1, false, 0, 0) /** * This op calculates backprop dot for two tensors along given dimensions * * input array: * x: tensor to calculate dot for * y: tensor to calculate dot for * z: tensor with gradient output of the FF dot for x and y * * int arguments: * list of integers - dimensions to calculate dot along, * default corresponds to empty list in which case calculation * is performed for all dimensions and scalar is returned. * * output array: * the tensor with calculated backproped dots * */ #if NOT_EXCLUDED(OP_reduce_dot_bp) DECLARE_CUSTOM_OP(reduce_dot_bp, 3, 2, false, 0, 0); #endif /** * reduce_logsumexp - tf.reduce_logsumexe operation * * input params: * 0 - NDArray (input) * 1 - 1D NDArray (axis) (optional) - integer array * * T_ARG param (optional): * 0 - keep_dims != 0. * * int params (optional): * 0 - axe 1 * 1 - axe 2 * ... * N-1 axe N * * CAUTION: All axes are optional and should be between 0 and input->rankOf() - 1 * and put either with second param or as integers but not both * * output: * 0 - NDArray with reduces shape accordingly to axes (the scalar in default case). */ #if NOT_EXCLUDED(OP_reduce_logsumexp) DECLARE_CUSTOM_OP(reduce_logsumexp, 1, 1, false, 0, 0); #endif /** * Copy a tensor setting everything outside a central band in each innermost matrix * * input array: * x: given tensor with shape {..., M, N} - as vector (matrix) of matricies MxN * * int arguments: * lower band * upper band * * output array: * matrix with given bands between lower and upper diagonals * */ #if NOT_EXCLUDED(OP_matrix_band_part) DECLARE_CONFIGURABLE_OP(matrix_band_part, 1, 1, true, 0, 2); #endif #if NOT_EXCLUDED(OP_Assert) DECLARE_OP(Assert, 1, 1, false); #endif /** * image.non_max_suppression ops. * input: * 0 - boxes - 2D-tensor with shape (num_boxes, 4) by float type * 1 - scales - 1D-tensor with shape (num_boxes) by float type * 2 - output_size - 0D-tensor by int type (optional) * float args: * 0 - overlap_threshold - threshold value for overlap checks (optional, by default 0.5) * 1 - score_threshold - the threshold for deciding when to remove boxes based on score (optional, by default -inf) * int args: * 0 - output_size - as arg 2 used for same target. Eigher this or arg 2 should be provided. * * output: * - vector with size M, where M <= output_size by int type * * */ #if NOT_EXCLUDED(OP_image_non_max_suppression) DECLARE_CUSTOM_OP(non_max_suppression, 2, 1, false, 0, 0); #endif #if NOT_EXCLUDED(OP_image_non_max_suppression_v3) DECLARE_CUSTOM_OP(non_max_suppression_v3, 2, 1, false, 0, 0); #endif /* * image.non_max_suppression_overlaps op. * input: * 0 - boxes - 2D-tensor with shape (num_boxes, 4) by float type * 1 - scales - 1D-tensor with shape (num_boxes) by float type * 2 - output_size - 0D-tensor by int type (optional) * float args: * 0 - overlap_threshold - threshold value for overlap checks (optional, by default 0.5) * 1 - score_threshold - the threshold for deciding when to remove boxes based on score (optional, by default -inf) * int args: * 0 - output_size - as arg 2 used for same target. Eigher this or arg 2 should be provided. * * output: * 0 - 1D integer tensor with shape [M], epresenting the selected indices from the overlaps tensor, where M <= max_output_size * */ #if NOT_EXCLUDED(OP_image_non_max_suppression_overlaps) DECLARE_CUSTOM_OP(non_max_suppression_overlaps, 2, 1, false, 0, 0); #endif /* * cholesky op - decomposite positive square symetric matrix (or matricies when rank > 2). * input: * 0 - matricies - tensor with shape (..., N, N) by float type * * output - lower triangular matrix (matricies when rank > 2) with the same shape as input. * */ #if NOT_EXCLUDED(OP_cholesky) DECLARE_OP(cholesky, 1, 1, true); #endif /* * nth_element - apply nth_element for last dimension of input tensor * input array: * 0 - input array * 1 - scalar tensor with n for operation. n should be less than last dimension * * output: * 0 - NDArray with the same shape as input */ #if NOT_EXCLUDED(OP_nth_element) DECLARE_CUSTOM_OP(nth_element, 2, 1, false, 0, 0); #endif /** * This op checks for Inf/NaN values within input array, and throws exception if there's at least one */ #if NOT_EXCLUDED(OP_check_numerics) DECLARE_CUSTOM_OP(check_numerics, 2, 1, true, 0, 0); #endif /** * fake_quant_with_min_max_vals - tf.quantization.fake_quant_with_min_max_vars * * input params: * 0 - NDArray (input) * 1 - 0D Tensor - min value * 2 - 0D Tensor - max value * * int params (optional): * 0 - num_bits (allowed interval [2, 16], default 8) * 1 - narrow_range (default False) * * output: * 0 - NDArray with the same shape as input */ #if NOT_EXCLUDED(OP_fake_quant_with_min_max_vars) DECLARE_CONFIGURABLE_OP(fake_quant_with_min_max_vars, 3, 1, true, 0, -2); #endif /** * fake_quant_with_min_max_vals_per_channel - tf.quantization.fake_quant_with_min_max_vars_per_channel * * input params: * 0 - NDArray (input) - at least 2D. * 1 - 1D Tensor - min values (min length equals to last dim of input) * 2 - 1D Tensor - max value (length equals to min) * * int params (optional): * 0 - num_bits (allowed interval [2, 16], default 8) * 1 - narrow_range (default False) * * output: * 0 - NDArray with the same shape as input */ #if NOT_EXCLUDED(OP_fake_quant_with_min_max_vars_per_channel) DECLARE_CONFIGURABLE_OP(fake_quant_with_min_max_vars_per_channel, 3, 1, true, 0, -2); #endif /** * compare_and_bitpack - Compare values of input to threshold and pack resulting bits into a uint8 * * input params: * 0 - NDArray (input). Note: last dimension should be divisibly by 8 * 1 - 0D Tensor - threshold to compare against. Note: when input and threshold is bool type, the threshold is ignored * * * output: * 0 - NDArray with the shape as {input.dim0,...input.dimLast/8} and type uint8 */ #if NOT_EXCLUDED(OP_compare_and_bitpack) DECLARE_CUSTOM_OP(compare_and_bitpack, 2, 1, false, 0, 0); #endif } } #endif