/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include #include #include #include #include namespace sd { namespace ops { namespace helpers { // -------------------------------------------------------------------------------------------------------------- // // Segment ops linear kernels // -------------------------------------------------------------------------------------------------------------- // template static __global__ void segmentMeanLinearKernel(void* input, Nd4jLong const* inputShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong const* outputShape) { __shared__ T* val; __shared__ Nd4jLong xLen, zLen, segment, zIndex; __shared__ T* x; __shared__ T* z; __shared__ int threadsPerSegment, start, finish; if (threadIdx.x == 0) { threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses; segment = blockIdx.x / threadsPerSegment; x = reinterpret_cast(input); z = reinterpret_cast(output); // extern __shared__ unsigned char shmem[]; // val = reinterpret_cast(shmem); xLen = shape::length(inputShape); zLen = shape::length(outputShape); //[zIndex] = if (segment < numOfClasses) { zIndex = shape::getIndexOffset(segment, outputShape); start = starts[segment]; finish = start + lengths[segment]; //val[segment] = ; z[zIndex] = T(x[shape::getIndexOffset(start, inputShape)] / lengths[segment]); // val[segment] = z[zIndex]; } } __syncthreads(); for (auto e = start + threadIdx.x + 1; e < finish; e += blockDim.x) { auto xIndex = shape::getIndexOffset(e, inputShape); if (lengths[segment]) sd::math::atomics::nd4j_atomicAdd(&z[zIndex], T(x[xIndex] / lengths[segment])); } } // -------------------------------------------------------------------------------------------------------------- // template static __global__ void unsortedSegmentMeanLinearKernel(void* input, Nd4jLong const* inputShape, void* indices, Nd4jLong const* indicesShape, int* starts, int* lengths, Nd4jLong numOfClasses, void* output, Nd4jLong const* outputShape) { __shared__ T* val; __shared__ Nd4jLong xLen, zLen, zIndex; __shared__ T* x; __shared__ T* z; __shared__ I* y; //int threadsPerSegment, start, finish; auto segment = blockIdx.x;// / if (threadIdx.x == 0) { // threadsPerSegment = (gridDim.x + numOfClasses - 1) / numOfClasses; // threadsPerSegment; x = reinterpret_cast(input); z = reinterpret_cast(output); y = reinterpret_cast(indices); // extern __shared__ unsigned char shmem[]; // val = reinterpret_cast(shmem); xLen = shape::length(inputShape); zLen = shape::length(outputShape); // if (segment < numOfClasses) { zIndex = shape::getIndexOffset(segment, outputShape); //start = starts[segment]; //finish = start + lengths[segment]; if (lengths[segment] > 0) z[zIndex] = T(x[shape::getIndexOffset(starts[segment], inputShape)] / T(lengths[segment])); else z[zIndex] = 0; //DataTypeUtils::max(); // val[segment] = z[zIndex]; // } } __syncthreads(); if (lengths[segment] > 0) for (auto e = threadIdx.x; e < xLen; e += blockDim.x) { auto xIndex = shape::getIndexOffset(e, inputShape); auto yIndex = shape::getIndexOffset(e, indicesShape); if (y[yIndex] == segment && e != starts[segment]) { sd::math::atomics::nd4j_atomicAdd(&z[zIndex], T(x[xIndex]/T(lengths[segment]))); } } } // -------------------------------------------------------------------------------------------------------------- // // SegmentMean kernel template static __global__ void segmentMeanTadKernel(void* inputBuf, Nd4jLong const* inputShape, Nd4jLong const* inputTads, Nd4jLong const* inputTadOffsets, I* indices, int* starts, int* lengths, Nd4jLong numOfClasses, void* outputBuf, Nd4jLong const* outputShape, Nd4jLong const* outputTads, Nd4jLong const* outputTadOffsets) { __shared__ T* val; __shared__ Nd4jLong len, zIndex, total; __shared__ T* z; __shared__ int threadsPerSegment, start, finish; auto segment = indices[blockIdx.x]; // / threadsPerSegment; if (threadIdx.x == 0) { z = reinterpret_cast(outputBuf) + outputTadOffsets[segment]; len = shape::length(inputTads); start = starts[segment]; finish = start + lengths[segment]; total = shape::sizeAt(inputShape, 0); } __syncthreads(); auto idx = blockIdx.x; if (blockIdx.x <= total) { auto x = reinterpret_cast(inputBuf) + inputTadOffsets[idx]; if (blockIdx.x == start) { for (auto e = threadIdx.x; e < len; e += blockDim.x) { auto xIndex = shape::getIndexOffset(e, inputTads); auto zIndex = shape::getIndexOffset(e, outputTads); sd::math::atomics::nd4j_atomicAdd(&z[zIndex], T(x[xIndex]/lengths[segment])); } } else { for (auto e = threadIdx.x; e < len; e += blockDim.x) { auto xIndex = shape::getIndexOffset(e, inputTads); auto zIndex = shape::getIndexOffset(e, outputTads); if (lengths[segment]) sd::math::atomics::nd4j_atomicAdd(&z[zIndex], T(x[xIndex]/lengths[segment])); } } } } // -------------------------------------------------------------------------------------------------------------- // // segmen mean template static void segmentMeanFunctor_(LaunchContext* context, NDArray* input, NDArray* indices, NDArray* output) { auto stream = context->getCudaStream(); Nd4jLong numClasses = indices->e(indices->lengthOf() - 1) + 1; NDArray classesRangesLens = NDArrayFactory::create('c', {numClasses}, context); NDArray classesRangesBegs = NDArrayFactory::create('c', {numClasses}, context); classesRangesBegs.assign(indices->lengthOf()); classesRangesLens.assign(0); NDArray::prepareSpecialUse({output}, {input, indices}); dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32); int* begins = reinterpret_cast(classesRangesBegs.specialBuffer()); int* lengths = reinterpret_cast(classesRangesLens.specialBuffer()); fillUpSegments(indices, numClasses, classesRangesBegs, classesRangesLens); if (input->isVector()) { segmentMeanLinearKernel<<lengthOf(), numClasses * 32 + 32, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo()); } else { std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); auto inputTads = packX.specialShapeInfo(); auto inputTadOffsets = packX.specialOffsets(); auto outputTads = packZ.specialShapeInfo(); auto outputTadOffsets = packZ.specialOffsets(); segmentMeanTadKernel<<sizeAt(0), 512, 2048, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast(indices->specialBuffer()), begins, lengths, numClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets); } NDArray::registerSpecialUse({output}, {input, indices}); } // -------------------------------------------------------------------------------------------------------------- // void segmentMeanFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices}); BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), segmentMeanFunctor_, (context, input, indices, output), NUMERIC_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices}); } // -------------------------------------------------------------------------------------------------------------- // template static void unsortedSegmentMeanFunctor_(sd::LaunchContext* context, NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) { auto stream = context->getCudaStream(); // NDArray classes = NDArrayFactory::create('c', {numOfClasses, 2}); NDArray classesRangesBegs = NDArrayFactory::create('c', {numOfClasses}, context); NDArray classesRangesLens = NDArrayFactory::create('c', {numOfClasses}, context); // NDArray row = NDArrayFactory::create('c', {1, 2}, {(int)indices->lengthOf(), (int)0}); // classes.applyTrueBroadcast(sd::BroadcastOpsTuple::Assign(), &row, &classes); classesRangesBegs.assign(indices->lengthOf()); classesRangesLens.assign(0); dim3 dims(numOfClasses, indices->lengthOf(), numOfClasses * 32 + 32); // int* classesBuf = reinterpret_cast(classes.specialBuffer()); fillUpSegments(indices, numOfClasses, classesRangesBegs, classesRangesLens); int* begins = reinterpret_cast(classesRangesBegs.specialBuffer()); int* lengths = reinterpret_cast(classesRangesLens.specialBuffer()); if (input->isVector()) { unsortedSegmentMeanLinearKernel<<>>(input->specialBuffer(), input->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo()); } else { output->assign(0); std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); Nd4jLong const* inputTads = packX.specialShapeInfo(); Nd4jLong const* inputTadOffsets = packX.specialOffsets(); Nd4jLong const* outputTads = packZ.specialShapeInfo(); Nd4jLong const* outputTadOffsets = packZ.specialOffsets(); dims.x = input->sizeAt(0); segmentMeanTadKernel<<>>(input->specialBuffer(), input->specialShapeInfo(), inputTads, inputTadOffsets, reinterpret_cast(indices->specialBuffer()), begins, lengths, numOfClasses, output->specialBuffer(), output->specialShapeInfo(), outputTads, outputTadOffsets); } } // -------------------------------------------------------------------------------------------------------------- // void unsortedSegmentMeanFunctor(sd::LaunchContext* context , NDArray* input, NDArray* indices, Nd4jLong numOfClasses, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices}); BUILD_DOUBLE_SELECTOR(input->dataType(), indices->dataType(), unsortedSegmentMeanFunctor_, (context, input, indices, numOfClasses, output), NUMERIC_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices}); } // -------------------------------------------------------------------------------------------------------------- // template static __global__ void segmentMeanBPLinearKernel(void* inputBuf, Nd4jLong const* inputShape, void* eps, Nd4jLong const* epsShape, void* indicesBuf, Nd4jLong const* indicesShape, int* lengths, void* outputBuf, Nd4jLong const* outputShape) { __shared__ T* x; __shared__ T* gradIn; __shared__ T* gradOut; __shared__ I* y; __shared__ T* z; __shared__ Nd4jLong xLen, gradLen; if (threadIdx.x == 0) { xLen = shape::length(inputShape); x = reinterpret_cast(inputBuf); y = reinterpret_cast(indicesBuf); z = reinterpret_cast(outputBuf); gradOut = reinterpret_cast(eps); gradLen = shape::length(epsShape); } __syncthreads(); auto start = blockIdx.x * blockDim.x + threadIdx.x; auto step = gridDim.x * blockDim.x; for (auto e = start; e < xLen; e += step) { auto zOffset = shape::getIndexOffset(e, outputShape); auto xOffset = shape::getIndexOffset(e, inputShape); auto yOffset = shape::getIndexOffset(e, indicesShape); auto classIndex = y[yOffset]; auto gradOffsetO = shape::getIndexOffset(classIndex, epsShape); z[zOffset] = T(gradOut[gradOffsetO] / float(lengths[classIndex])); } } // -------------------------------------------------------------------------------------------------------------- // template static __global__ void segmentMeanBPTadKernel(void* inputBuf, Nd4jLong const* inputShape, void* eps, Nd4jLong const* epsShape, void* indicesBuf, Nd4jLong const* indicesShape, int* lengths, void* outputBuf, Nd4jLong const* outputShape,Nd4jLong const* inputTad, Nd4jLong const* inputOffsets, Nd4jLong const* gradOutTad, Nd4jLong const* gradOutOffsets, Nd4jLong const* outTad, Nd4jLong const* outOffsets) { __shared__ T* x; __shared__ T* gradOut; __shared__ I* y; __shared__ T* z; __shared__ Nd4jLong xLen, yLen, gradLen, currentLen; if (threadIdx.x == 0) { xLen = shape::length(inputShape); x = reinterpret_cast(inputBuf); y = reinterpret_cast(indicesBuf); z = reinterpret_cast(outputBuf); yLen = shape::length(indicesShape); gradOut = reinterpret_cast(eps); gradLen = shape::length(epsShape); currentLen = shape::length(outTad); } __syncthreads(); for (auto i = blockIdx.x; i < yLen; i += gridDim.x) { // auto yIndex = shape::getIndexOffset(i, indicesShape); auto segment = y[i]; //yIndex]; T* currentOut = z + outOffsets[i]; T* outGrad = gradOut + gradOutOffsets[segment]; for (auto e = threadIdx.x; e < currentLen; e += blockDim.x) { auto zIndex = shape::getIndexOffset(e, outTad); auto gradIndex = shape::getIndexOffset(e, gradOutTad); if (lengths[segment] > 0) currentOut[zIndex] = T(outGrad[gradIndex] / float(lengths[segment])); } } } // -------------------------------------------------------------------------------------------------------------- // // backrop for mean template int segmentMeanFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) { auto stream = context->getCudaStream(); NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); auto numClasses = indices->e(indices->lengthOf() - 1) + 1; NDArray classesRangesLens = NDArrayFactory::create('c', {numClasses}, context); NDArray classesRangesBegs = NDArrayFactory::create('c', {numClasses}, context); classesRangesBegs.assign(indices->lengthOf()); classesRangesLens.assign(0); dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32); fillUpSegments(indices, numClasses, classesRangesBegs, classesRangesLens); int* begins = reinterpret_cast(classesRangesBegs.specialBuffer()); int* lengths = reinterpret_cast(classesRangesLens.specialBuffer()); if (input->isVector()) { Nd4jLong loop_size = input->lengthOf(); auto numOfClasses = gradOut->lengthOf(); //indices->e(loop_size - 1); segmentMeanBPLinearKernel<<lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo()); } else { std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); // auto packGradIn = sd::ConstantTadHelper::getInstance().tadForDimensions(tempRes.shapeInfo(), dimensions); auto packGradOut = sd::ConstantTadHelper::getInstance().tadForDimensions(gradOut->shapeInfo(), dimensions); Nd4jLong const* inputTads = packX.specialShapeInfo(); Nd4jLong const* inputTadOffsets = packX.specialOffsets(); Nd4jLong const* outputTads = packZ.specialShapeInfo(); Nd4jLong const* outputTadOffsets = packZ.specialOffsets(); Nd4jLong const* gradOutTads = packGradOut.specialShapeInfo(); Nd4jLong const* gradOutTadOffsets = packGradOut.specialOffsets(); segmentMeanBPTadKernel<<lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets, outputTads, outputTadOffsets); } NDArray::registerSpecialUse({output}, {input, indices, gradOut}); return Status::OK(); } // -------------------------------------------------------------------------------------------------------------- // // segmen mean bp main int segmentMeanFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return segmentMeanFunctorBP_, (context, input, indices, gradOut, output), FLOAT_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices, gradOut}); } // -------------------------------------------------------------------------------------------------------------- // template static int unsortedSegmentMeanFunctorBP_(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) { auto stream = context->getCudaStream(); NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); auto numClasses = indices->e(indices->lengthOf() - 1) + 1; NDArray classesRangesLens = NDArrayFactory::create('c', {numClasses}, context); NDArray classesRangesBegs = NDArrayFactory::create('c', {numClasses}, context); classesRangesBegs.assign(indices->lengthOf()); classesRangesLens.assign(0); dim3 dims(numClasses, indices->lengthOf(), numClasses * 32 + 32); fillUpSegments(indices, numClasses, classesRangesBegs, classesRangesLens); int* begins = reinterpret_cast(classesRangesBegs.specialBuffer()); int* lengths = reinterpret_cast(classesRangesLens.specialBuffer()); if (input->isVector()) { Nd4jLong loop_size = input->lengthOf(); auto numOfClasses = gradOut->lengthOf(); //indices->e(loop_size - 1); segmentMeanBPLinearKernel<<lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo()); } else { std::vector dimensions = ShapeUtils::evalDimsToExclude(input->rankOf(), {0}); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input->shapeInfo(), dimensions); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output->shapeInfo(), dimensions); // auto packGradIn = sd::ConstantTadHelper::getInstance().tadForDimensions(tempRes.shapeInfo(), dimensions); auto packGradOut = sd::ConstantTadHelper::getInstance().tadForDimensions(gradOut->shapeInfo(), dimensions); Nd4jLong const* inputTads = packX.specialShapeInfo(); Nd4jLong const* inputTadOffsets = packX.specialOffsets(); Nd4jLong const* outputTads = packZ.specialShapeInfo(); Nd4jLong const* outputTadOffsets = packZ.specialOffsets(); Nd4jLong const* gradOutTads = packGradOut.specialShapeInfo(); Nd4jLong const* gradOutTadOffsets = packGradOut.specialOffsets(); segmentMeanBPTadKernel<<lengthOf(), input->lengthOf(), 256, *stream>>>(input->specialBuffer(), input->specialShapeInfo(), gradOut->specialBuffer(), gradOut->specialShapeInfo(), indices->specialBuffer(), indices->specialShapeInfo(), lengths, output->specialBuffer(), output->specialShapeInfo(), inputTads, inputTadOffsets, gradOutTads, gradOutTadOffsets, outputTads, outputTadOffsets); } NDArray::registerSpecialUse({output}, {input, indices, gradOut}); return Status::OK(); } // -------------------------------------------------------------------------------------------------------------- // int unsortedSegmentMeanFunctorBP(sd::LaunchContext* context , NDArray* input, NDArray* indices, NDArray* gradOut, Nd4jLong numOfClasses, NDArray* output) { NDArray::prepareSpecialUse({output}, {input, indices, gradOut}); BUILD_DOUBLE_SELECTOR(output->dataType(), indices->dataType(), return unsortedSegmentMeanFunctorBP_, (context, input, indices, gradOut, numOfClasses, output), FLOAT_TYPES, INDEXING_TYPES); NDArray::registerSpecialUse({output}, {input, indices, gradOut}); } } } }