/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by Yurii Shyrma on 02.01.2018 // #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// HHsequence::HHsequence(const NDArray& vectors, const NDArray& coeffs, const char type): _vectors(vectors), _coeffs(coeffs) { _diagSize = sd::math::nd4j_min(_vectors.sizeAt(0), _vectors.sizeAt(1)); _shift = 0; _type = type; } ////////////////////////////////////////////////////////////////////////// template void HHsequence::mulLeft_(NDArray& matrix) { const int rows = _vectors.sizeAt(0); const int cols = _vectors.sizeAt(1); const int inRows = matrix.sizeAt(0); for(int i = _diagSize - 1; i >= 0; --i) { if(_type == 'u') { NDArray block = matrix({inRows-rows+_shift+ i,inRows, 0,0}, true); Householder::mulLeft(block, _vectors({i + 1 + _shift, rows, i, i+1}, true), _coeffs.t(i)); } else { NDArray block = matrix({inRows-cols+_shift+i,inRows, 0,0}, true); Householder::mulLeft(block, _vectors({i, i+1, i + 1 + _shift, cols}, true), _coeffs.t(i)); } } } ////////////////////////////////////////////////////////////////////////// NDArray HHsequence::getTail(const int idx) const { int first = idx + 1 + _shift; if(_type == 'u') return _vectors({first, -1, idx, idx+1}, true); else return _vectors({idx, idx+1, first, -1}, true); } ////////////////////////////////////////////////////////////////////////// template void HHsequence::applyTo_(NDArray& dest) { int size = _type == 'u' ? _vectors.sizeAt(0) : _vectors.sizeAt(1); if(dest.rankOf() != 2 || (dest.sizeAt(0) != size && dest.sizeAt(1) != size)) dest = NDArray(dest.ordering(), {size, size}, dest.dataType(), dest.getContext()); dest.setIdentity(); for(int k = _diagSize - 1; k >= 0; --k) { int curNum = size - k - _shift; if(curNum < 1 || (k + 1 + _shift) >= size ) continue; auto block = dest({dest.sizeAt(0)-curNum,dest.sizeAt(0), dest.sizeAt(1)-curNum,dest.sizeAt(1)}, true); Householder::mulLeft(block, getTail(k), _coeffs.t(k)); } } ////////////////////////////////////////////////////////////////////////// void HHsequence::applyTo(NDArray& dest) { auto xType = _coeffs.dataType(); BUILD_SINGLE_SELECTOR(xType, applyTo_, (dest), FLOAT_TYPES); } ////////////////////////////////////////////////////////////////////////// void HHsequence::mulLeft(NDArray& matrix) { auto xType = _coeffs.dataType(); BUILD_SINGLE_SELECTOR(xType, mulLeft_, (matrix), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void HHsequence::applyTo_, (sd::NDArray &dest), FLOAT_TYPES); BUILD_SINGLE_TEMPLATE(template void HHsequence::mulLeft_, (NDArray& matrix), FLOAT_TYPES); } } }