/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma, created on 25.02.2018 // #include #include #include #include #include namespace nd4j { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// template __global__ static void batchnormCuda(const void* vx, const Nd4jLong* xShapeInfo, const void* vMean, const Nd4jLong* meanShapeInfo, const void* vVariance, const Nd4jLong* varianceShapeInfo, const void* vGamma, const Nd4jLong* gammaShapeInfo, const void* vBeta, const Nd4jLong* betaShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets, const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets, const T epsilon) { const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); const auto mean = reinterpret_cast(vMean); const auto variance = reinterpret_cast(vVariance); const auto gamma = reinterpret_cast(vGamma); const auto beta = reinterpret_cast(vBeta); // maxRank = xRank = zRank, minRank = meanRank = varianceRank = gammaRank = betaRank __shared__ Nd4jLong minLen, tadLen, totalThreads; if (threadIdx.x == 0) { totalThreads = gridDim.x * blockDim.x; minLen = shape::length(meanShapeInfo); tadLen = shape::length(xShapeInfo) / minLen; } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (uint i = tid; i < minLen; i += totalThreads) { const auto meanOffset = shape::getIndexOffset(i, meanShapeInfo, minLen); const auto varianceOffset = shape::getIndexOffset(i, varianceShapeInfo, minLen); T sigmaInvGam = 1. / nd4j::math::nd4j_sqrt(variance[varianceOffset] + epsilon); if(gamma != nullptr) sigmaInvGam *= gamma[shape::getIndexOffset(i, gammaShapeInfo, minLen)]; auto betaOffset = 0; if(beta != nullptr) betaOffset = shape::getIndexOffset(i, betaShapeInfo, minLen); const auto xTad = x + xTadOffsets[i]; auto zTad = z + zTadOffsets[i]; for (uint j = 0; j < tadLen; ++j) { const auto xTadOffset = shape::getIndexOffset(j, xTadShapeInfo, tadLen); const auto zTadOffset = shape::getIndexOffset(j, zTadShapeInfo, tadLen); zTad[zTadOffset] = (xTad[xTadOffset] - mean[meanOffset]) * sigmaInvGam; if(beta != nullptr) zTad[zTadOffset] += beta[betaOffset]; } } } ////////////////////////////////////////////////////////////////////////// template __global__ static void batchnormCuda2(const void* vx, const Nd4jLong* xShapeInfo, const void* vMean, const Nd4jLong* meanShapeInfo, const void* vVariance, const Nd4jLong* varianceShapeInfo, const void* vGamma, const Nd4jLong* gammaShapeInfo, const void* vBeta, const Nd4jLong* betaShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int numDims, const int* dims, const T epsilon) { const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); const auto mean = reinterpret_cast(vMean); const auto variance = reinterpret_cast(vVariance); const auto gamma = reinterpret_cast(vGamma); const auto beta = reinterpret_cast(vBeta); __shared__ int xRank, minRank; // xRank == zRank. minRank = meanRank = varianceRank = gammaRank = betaRank __shared__ Nd4jLong xLen, totalThreads, *sharedMem; // xLen = zLen if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); totalThreads = gridDim.x * blockDim.x; xLen = shape::length(xShapeInfo); xRank = shape::rank(xShapeInfo); minRank = shape::rank(meanShapeInfo); } __syncthreads(); auto coords = sharedMem + threadIdx.x * xRank; const auto tid = blockIdx.x * blockDim.x + threadIdx.x; for (uint i = tid; i < xLen; i += totalThreads) { shape::index2coords(xRank, shape::shapeOf(const_cast(xShapeInfo)), i, xLen, coords); const auto xOffset = shape::getOffset(0, shape::shapeOf(const_cast(xShapeInfo)), shape::stride(const_cast(xShapeInfo)), coords, xRank); const auto zOffset = shape::getOffset(0, shape::shapeOf(const_cast(zShapeInfo)), shape::stride(const_cast(zShapeInfo)), coords, xRank); if(minRank == xRank) { for (uint i = 0, j = 0; i < xRank; ++i) { if(j < numDims && i != dims[j]) coords[i] = 0; else ++j; } } else // minRank = numDims = 1 in this case coords[0] = coords[dims[0]]; const auto meanOffset = shape::getOffset(0, shape::shapeOf(const_cast(meanShapeInfo)), shape::stride(const_cast(meanShapeInfo)), coords, minRank); const auto varianceOffset = shape::getOffset(0, shape::shapeOf(const_cast(varianceShapeInfo)), shape::stride(const_cast(varianceShapeInfo)), coords, minRank); T sigmaInvGam = 1. / nd4j::math::nd4j_sqrt(variance[varianceOffset] + epsilon); if(gamma != nullptr) { const auto gammaOffset = shape::getOffset(0, shape::shapeOf(const_cast(gammaShapeInfo)), shape::stride(const_cast(gammaShapeInfo)), coords, minRank); sigmaInvGam *= gamma[gammaOffset]; } z[zOffset] = (x[xOffset] - mean[meanOffset]) * sigmaInvGam; if(beta != nullptr) { const auto betaOffset = shape::getOffset(0, shape::shapeOf(const_cast(betaShapeInfo)), shape::stride(const_cast(betaShapeInfo)), coords, minRank); z[zOffset] += beta[betaOffset]; } } } /////////////////////////////////////////////////////////////////// template __host__ static void batchnormCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vMean, const Nd4jLong* meanShapeInfo, const void* vVariance, const Nd4jLong* varianceShapeInfo, const void* vGamma, const Nd4jLong* gammaShapeInfo, const void* vBeta, const Nd4jLong* betaShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets, const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets, const double epsilon) { batchnormCuda<<>>(vx, xShapeInfo, vMean, meanShapeInfo, vVariance, varianceShapeInfo, vGamma, gammaShapeInfo, vBeta, betaShapeInfo, vz, zShapeInfo, xTadShapeInfo, xTadOffsets, zTadShapeInfo, zTadOffsets, static_cast(epsilon)); } BUILD_SINGLE_TEMPLATE(template void batchnormCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vMean, const Nd4jLong* meanShapeInfo, const void* vVariance, const Nd4jLong* varianceShapeInfo, const void* vGamma, const Nd4jLong* gammaShapeInfo, const void* vBeta, const Nd4jLong* betaShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const Nd4jLong* xTadShapeInfo, const Nd4jLong* xTadOffsets, const Nd4jLong* zTadShapeInfo, const Nd4jLong* zTadOffsets, const double epsilon), FLOAT_TYPES); /////////////////////////////////////////////////////////////////// template __host__ static void batchnormCudaLauncher2(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vMean, const Nd4jLong* meanShapeInfo, const void* vVariance, const Nd4jLong* varianceShapeInfo, const void* vGamma, const Nd4jLong* gammaShapeInfo, const void* vBeta, const Nd4jLong* betaShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int numDims, const int* dims, const double epsilon) { batchnormCuda2<<>>(vx, xShapeInfo, vMean, meanShapeInfo, vVariance, varianceShapeInfo, vGamma, gammaShapeInfo, vBeta, betaShapeInfo, vz, zShapeInfo, numDims, dims, static_cast(epsilon)); } BUILD_SINGLE_TEMPLATE(template void batchnormCudaLauncher2, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, const void* vMean, const Nd4jLong* meanShapeInfo, const void* vVariance, const Nd4jLong* varianceShapeInfo, const void* vGamma, const Nd4jLong* gammaShapeInfo, const void* vBeta, const Nd4jLong* betaShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int numDims, const int* dims, const double epsilon), FLOAT_TYPES); ////////////////////////////////////////////////////////////////////////// void batchnorm(const NDArray* input, const NDArray* mean, const NDArray* variance, const NDArray* gamma, const NDArray* beta, NDArray* output, const std::vector& axes, const double epsilon) { std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(input->rankOf(), axes); auto packX = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), dimsToExclude); auto packZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dimsToExclude); const int threadsPerBlock = MAX_NUM_THREADS / 2; const int blocksPerGrid = (mean->lengthOf() + threadsPerBlock - 1) / threadsPerBlock; PointersManager manager(input->getContext(), "batchnorm"); NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta}); BUILD_SINGLE_SELECTOR(input->dataType(), batchnormCudaLauncher, (blocksPerGrid, threadsPerBlock, input->getContext()->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), mean->getSpecialBuffer(), mean->getSpecialShapeInfo(), variance->getSpecialBuffer(), variance->getSpecialShapeInfo(), gamma ? gamma->getSpecialBuffer() : nullptr, gamma ? gamma->getSpecialShapeInfo() : nullptr, beta ? beta->getSpecialBuffer() : nullptr, beta ? beta->getSpecialShapeInfo() : nullptr, output->specialBuffer(), output->specialShapeInfo(), packX.platformShapeInfo(), packX.platformOffsets(), packZ.platformShapeInfo(), packZ.platformOffsets(), epsilon), FLOAT_TYPES); NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta}); manager.synchronize(); // const int threadsPerBlock = MAX_NUM_THREADS / 4; // const int blocksPerGrid = (input->lengthOf() + threadsPerBlock - 1) / threadsPerBlock; // const int sharedMem = sizeof(Nd4jLong) * threadsPerBlock * input->rankOf() + 128; // PointersManager manager(input->getContext(), "batchnorm"); // const int* dims = reinterpret_cast(manager.replicatePointer(axes.data(), axes.size() * sizeof(int))); // NDArray::prepareSpecialUse({output}, {input, mean, variance, gamma, beta}); // BUILD_SINGLE_SELECTOR(input->dataType(), batchnormCudaLauncher2, (blocksPerGrid, threadsPerBlock, sharedMem, input->getContext()->getCudaStream(), input->getSpecialBuffer(), input->getSpecialShapeInfo(), mean->getSpecialBuffer(), mean->getSpecialShapeInfo(), variance->getSpecialBuffer(), variance->getSpecialShapeInfo(), gamma ? gamma->getSpecialBuffer() : nullptr, gamma ? gamma->getSpecialShapeInfo() : nullptr, beta ? beta->getSpecialBuffer() : nullptr, beta ? beta->getSpecialShapeInfo() : nullptr, output->specialBuffer(), output->specialShapeInfo(), axes.size(), dims, epsilon), FLOAT_TYPES); // NDArray::registerSpecialUse({output}, {input, mean, variance, gamma, beta}); // manager.synchronize(); } } } }