/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 25.11.2017. // #include #if NOT_EXCLUDED(OP_softmax_cross_entropy_loss) #include namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(softmax_cross_entropy_loss, 3, 1, false, 1, 1) { auto logits = INPUT_VARIABLE(0); auto weights = INPUT_VARIABLE(1); auto labels = INPUT_VARIABLE(2); auto output = OUTPUT_VARIABLE(0); int reductionMode = INT_ARG(0); // 0 - "none"; 1 - "weighted_sum"; 2 - "weighted_mean"; 3 - "weighted_sum_by_nonzero_weights" double labelsSmoothing = T_ARG(0); // input validation REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str()); // only 4 possible reduction modes exist REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode); // smoothing is possible for rank of logits/labels > 1 REQUIRE_TRUE(labels->rankOf() > 1 || (labels->rankOf() == 1 && labelsSmoothing == 0.), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: smoothing is not possible when rank of labels/ logits = 1 !"); if(!output->isScalar()) { // weights array can be single scalar or has the same shape as output, and must be broadcastable to output shape REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == output->rankOf(), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", weights->rankOf(), output->rankOf()); // check whether broadcast operation is possible for weights array REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(*weights, *output), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(labels).c_str()); } // If label_smoothing is nonzero, smooth the labels towards 1/num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes // num_classes = labels->sizeAt(1) NDArray* cLabels = new NDArray(labels->cast(weights->dataType())); NDArray* newLabels = cLabels; if(labelsSmoothing != 0.) { newLabels = new NDArray(cLabels); newLabels->assign((1.f - labelsSmoothing) * *cLabels + labelsSmoothing / cLabels->sizeAt(1)); } // main formula: result = - sum_i(lables_i * log(softmax_i)) - sum over last dimension // softmax_i = exp(logits_i) / sum_j(exp(logits_j)) // so result = sum_i( lables_i * (log(sum_j(exp(logits_j))) - logits_i) ) // for numerical stability we use shifted logits (one can approve this using simple math): // softmax_i = exp(logits_i - maxLogit) / sum_j(exp(logits_j - maxLogit)) // maxLogit is max among logits_i std::vector dimensions = {-1}; NDArray shiftedLogits = *logits - logits->reduceAlongDimension(reduce::Max, dimensions, true); NDArray logSumExp = shiftedLogits.transform(transform::Exp).reduceAlongDimension(reduce::Sum, dimensions, true).transform(transform::Log); NDArray E = (*newLabels * (logSumExp - shiftedLogits)).reduceAlongDimension(reduce::Sum, dimensions); // perform weights broadcasting/tile to E if it is necessary auto weightsBroad = weights; if(!weights->isScalar() && !weights->isSameShape(&E)) { if(E.rankOf() == 1 && weights->isVector() && weights->rankOf() > 1) weightsBroad = new NDArray(weights->reshape(weights->ordering(), {weights->lengthOf()})); else weightsBroad = new NDArray(weights->tileToShape(E.shapeInfo())); } // multiply E on weights E *= *weightsBroad; switch (reductionMode) { case 0: // 0 - "none", un-reduced weighted losses with the same shape as labels. output->assign(&E); break; case 1: { // 1 - "weighted_sum", output is scalar and equal to sum of all elements of E array E.reduceNumber(reduce::Sum, *output); break; } case 2: { // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array double sum; if (weights->isScalar()) sum = weights->e(0) * E.lengthOf(); else sum = weightsBroad->reduceNumber(reduce::Sum).e(0); if (sum == 0.) *output = 0.; else output->assign(E.reduceNumber(reduce::Sum) / sum); break; } case 3: { // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights Nd4jLong numOfNonZeroWeights = 0; if(weights->isScalar()) { if(weights->e(0) != 0.) numOfNonZeroWeights = E.lengthOf(); } else { numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e(0); } if (numOfNonZeroWeights == 0) *output = 0.; else output->assign(E.reduceNumber(reduce::Sum) / double(numOfNonZeroWeights)); break; } } if(weightsBroad != weights) delete weightsBroad; if(newLabels != cLabels) delete newLabels; delete cLabels; return Status::OK(); } ////////////////////////////////////////////////////////////////////////// DECLARE_TYPES(softmax_cross_entropy_loss) { getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS}) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS, ALL_INTS}) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(softmax_cross_entropy_loss) { auto logitsShapeInfo = inputShape->at(0); auto weightsShapeInfo = inputShape->at(1); auto labelsShapeInfo = inputShape->at(2); // labels and logits must have the same shapes REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str()); DataType outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo)); Nd4jLong const* outShapeInfo = nullptr; if(INT_ARG(0) != 0) // in this case output is scalar outShapeInfo = ConstantShapeHelper::getInstance().scalarShapeInfo(outType); else { // in this case output has the shape as labels and logits minus last dimension std::vector dimensions = {-1}; outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(logitsShapeInfo), dimensions, logitsShapeInfo, false, true, block.getWorkspace()); // weights array can be single scalar or has the same rank as output, and must be broadcastable to output REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(outShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: weights array should be scalar or have the same rank as output array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(outShapeInfo)); // check whether broadcast operation is possible for weights array REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, outShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS OP: shapes of weights and output arrays should be broadcastable, but got weights = %s and output = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(outShapeInfo).c_str()); } return SHAPELIST(outShapeInfo); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(softmax_cross_entropy_loss_grad, 3, 3, false, 1, 1) { auto logits = INPUT_VARIABLE(0); auto weights = INPUT_VARIABLE(1); auto labels = INPUT_VARIABLE(2); auto dLdp = OUTPUT_VARIABLE(0); // dL/dlogits auto dLdw = OUTPUT_VARIABLE(1); // dL/dweights auto dLdl = OUTPUT_VARIABLE(2); // dL/dlabels auto labelsSmoothing = T_ARG(0); int reductionMode = INT_ARG(0); // 0 - "none"; 1 - "weighted_sum"; 2 - "weighted_mean"; 3 - "weighted_sum_by_nonzero_weights" // take into account Alex's proposition to treat "none" the same as "weighted_sum" mode when calculating gradients if(reductionMode == 0) reductionMode = 1; std::vector dimensions = {-1}; // input validation REQUIRE_TRUE(labels->isSameShape(logits), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly !", ShapeUtils::shapeAsString(labels).c_str(), ShapeUtils::shapeAsString(logits).c_str()); // only 4 possible reduction modes exist REQUIRE_TRUE(reductionMode==0 || reductionMode==1 || reductionMode==2 || reductionMode==3, 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: reduction mode value is not acceptable, possible values are 0, 1, 2, 3, but got %i instead!", reductionMode); auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(logits->ordering(), dimensions, logits->shapeInfo(), false, false, block.getWorkspace()); // weights array can be single scalar or has the same shape as loss, and must be broadcastable to loss shape REQUIRE_TRUE(weights->isScalar() || weights->rankOf() == shape::rank(lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", weights->rankOf(), shape::rank(lossShapeInfo)); // check whether broadcast operation is possible for weights array REQUIRE_TRUE(weights->isScalar() || ShapeUtils::areShapesBroadcastable(weights->shapeInfo(), lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weights).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str()); // smoothing is possible for rank of logits/labels > 1 REQUIRE_TRUE(labels->rankOf() > 1 || (labels->rankOf() == 1 && labelsSmoothing == 0.), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: smoothing is not possible when rank of labels/ logits = 1 !"); // If label_smoothing is nonzero, smooth the labels towards 1/num_classes: new_onehot_labels = onehot_labels * (1 - label_smoothing) + label_smoothing / num_classes // num_classes = labels->sizeAt(1) NDArray* cLabels = new NDArray(labels->cast(weights->dataType())); NDArray* newLabels = cLabels; if(labelsSmoothing != 0.) { newLabels = new NDArray(labels->shapeInfo(), dLdl->dataType(), false, block.launchContext()); newLabels->assign((1.f - labelsSmoothing) * *cLabels + labelsSmoothing / cLabels->sizeAt(1)); } NDArray softmax = (*logits - logits->reduceAlongDimension(reduce::Max, dimensions, true)).transform(transform::Exp); softmax /= softmax.reduceAlongDimension(reduce::Sum, dimensions, true); // dEdp = softmax * sum_i(lables_i) - labels dLdp->assign(softmax * newLabels->reduceAlongDimension(reduce::Sum, dimensions, true) - *newLabels); // dEdl = -log(softmax) dLdl->assign(-softmax.transform(transform::Log)* (1.f - labelsSmoothing)); NDArray shiftedLogits = *logits - logits->reduceAlongDimension(reduce::Max, dimensions, true); NDArray logSumExp = shiftedLogits.transform(transform::Exp).reduceAlongDimension(reduce::Sum, dimensions, true).transform(transform::Log); NDArray E = (*newLabels * (logSumExp - shiftedLogits)).reduceAlongDimension(reduce::Sum, dimensions); // perform weights broadcasting/tile to E if it is necessary auto weightsBroad = weights; if(!weights->isScalar() && !weights->isSameShape(&E)) weightsBroad = new NDArray(weights->tileToShape(E.shapeInfo())); dimensions = ShapeUtils::evalDimsToExclude(dLdp->rankOf(), dimensions); switch (reductionMode) { case 1: { // 1 - "none" and "weighted_sum", output is scalar and equal to sum of all elements of E array if(weights->isScalar() || weights->lengthOf() == 1) { dLdw->assign(E.reduceNumber(reduce::Sum)); *dLdp *= *weights; *dLdl *= *weights; } else { dLdp->applyBroadcast(sd::broadcast::Multiply, dimensions, *weightsBroad, *dLdp); dLdl->applyBroadcast(sd::broadcast::Multiply, dimensions, *weightsBroad, *dLdl); if(weights != weightsBroad) { std::vector axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo()); E.reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true); } else dLdw->assign(E); } break; } case 2: { // 2 - "weighted_mean", output is scalar and equal to sum of all elements of E array divided by sum of all elements of weightsBroad array NDArray sum; if (weights->isScalar()) sum = (*weights) * E.lengthOf(); else sum = weightsBroad->reduceNumber(reduce::Sum); if (sum.e(0) == 0.) { *dLdp = 0.; *dLdl = 0.; *dLdw = 0.; } else { if(weights->isScalar() || weights->lengthOf() == 1) { NDArray temp = *weights / sum; *dLdp *= temp; *dLdl *= temp; *dLdw = 0.; } else { NDArray temp = *weightsBroad / sum; dLdp->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdp); dLdl->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdl); if(weights != weightsBroad) { std::vector axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo()); ((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum)).reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true); } else dLdw->assign((E * sum - (E * *weightsBroad).reduceNumber(reduce::Sum)) / (sum*sum)); } } break; } case 3: { // 3 - "weighted_sum_by_nonzero_weights", output is scalar and equal to scalar sum of all elements of E array divided by number of non-zero weights Nd4jLong numOfNonZeroWeights = 0; if(weights->isScalar()) { if(weights->e(0) != 0.) numOfNonZeroWeights = E.lengthOf(); } else numOfNonZeroWeights = weightsBroad->reduceNumber(reduce::CountNonZero).e(0); if (numOfNonZeroWeights == 0) { *dLdp = 0.; *dLdl = 0.; *dLdw = 0.; } else { if(weights->isScalar() || weights->lengthOf() == 1) { NDArray temp = *weights / numOfNonZeroWeights; *dLdp *= temp; *dLdl *= temp; dLdw->assign(E.reduceNumber(reduce::Sum) / numOfNonZeroWeights); } else { NDArray temp = *weightsBroad / numOfNonZeroWeights; dLdp->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdp); dLdl->applyBroadcast(sd::broadcast::Multiply, dimensions, temp, *dLdl); if(weights != weightsBroad) { std::vector axesToReduceAlong = ShapeUtils::evalBroadcastBackwardAxis(weights->shapeInfo(), weightsBroad->shapeInfo()); E.reduceAlongDimension(reduce::Sum, *dLdw, axesToReduceAlong, true); *dLdw /= numOfNonZeroWeights; } else dLdw->assign(E / numOfNonZeroWeights); } } break; } } if(weightsBroad != weights) delete weightsBroad; if(newLabels != cLabels) delete newLabels; delete cLabels; return Status::OK(); } ////////////////////////////////////////////////////////////////////////// DECLARE_TYPES(softmax_cross_entropy_loss_grad) { getOpDescriptor()->setAllowedInputTypes(0, {ALL_FLOATS}) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS, ALL_INTS}) ->setAllowedInputTypes(3, {ALL_FLOATS}) ->setAllowedInputTypes(4, {ALL_FLOATS}) ->setAllowedInputTypes(5, {ALL_FLOATS}) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// DECLARE_SHAPE_FN(softmax_cross_entropy_loss_grad) { auto logitsShapeInfo = inputShape->at(0); auto weightsShapeInfo = inputShape->at(1); auto labelsShapeInfo = inputShape->at(2); std::vector dimensions = {-1}; // labels and logits must have the same shapes REQUIRE_TRUE(shape::shapeEquals(logitsShapeInfo, labelsShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: labels and logits arrays must have the same shapes, but got %s and %s correspondingly!", ShapeUtils::shapeAsString(labelsShapeInfo).c_str(), ShapeUtils::shapeAsString(logitsShapeInfo).c_str()); auto lossShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(logitsShapeInfo), dimensions, logitsShapeInfo, false, false, block.getWorkspace()); // weights array can be single scalar or has the same rank as loss, and must be broadcastable to loss REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || shape::rank(weightsShapeInfo) == shape::rank(lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: weights array should be scalar or have the same rank as loss array, but got %i and %i correspondingly!", shape::rank(weightsShapeInfo), shape::rank(lossShapeInfo)); // check whether broadcast operation is possible for weights array REQUIRE_TRUE(shape::isScalar(weightsShapeInfo) || ShapeUtils::areShapesBroadcastable(weightsShapeInfo, lossShapeInfo), 0, "SOFTMAX_CROSS_ENTROPY_LOSS_GRAD OP: shapes of weights and loss arrays should be broadcastable, but got weights = %s and loss = %s instead!", ShapeUtils::shapeAsString(weightsShapeInfo).c_str(), ShapeUtils::shapeAsString(lossShapeInfo).c_str()); auto outType = DataTypeUtils::pickFloatingType(ArrayOptions::dataType(logitsShapeInfo)); auto dLdpShapeInfo = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(outType, shape::order(logitsShapeInfo), shape::shapeOf(logitsShapeInfo), shape::rank(logitsShapeInfo))); auto dLdwShapeInfo = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(outType, shape::order(weightsShapeInfo), shape::shapeOf(weightsShapeInfo), shape::rank(weightsShapeInfo))); auto dLdlShapeInfo = ConstantShapeHelper::getInstance().createShapeInfo(ShapeDescriptor(outType, shape::order(labelsShapeInfo), shape::shapeOf(labelsShapeInfo), shape::rank(labelsShapeInfo))); return SHAPELIST(dLdpShapeInfo, dLdwShapeInfo, dLdlShapeInfo); } } } #endif