/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #if NOT_EXCLUDED(OP_divide) #include #include namespace sd { namespace ops { BROADCASTABLE_OP_IMPL(divide, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto z = OUTPUT_VARIABLE(0); BROADCAST_CHECK_EMPTY(x,y,z); REQUIRE_TRUE(!y->isB(), 0, "DIVIDE OP: you can't divide by bool array!"); auto tZ = BroadcastHelper::broadcastApply(BroadcastOpsTuple::Divide(), x, y, z); if (tZ == nullptr) return ND4J_STATUS_KERNEL_FAILURE; else if (tZ != z) { OVERWRITE_RESULT(tZ); } return Status::OK(); } DECLARE_SYN(Div, divide); DECLARE_TYPES(divide) { getOpDescriptor() ->setAllowedInputTypes(0, DataType::ANY) ->setAllowedInputTypes(1, DataType::ANY) ->setAllowedOutputTypes(0, DataType::INHERIT); } DECLARE_TYPES(divide_bp) { getOpDescriptor() ->setAllowedInputTypes(DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } CUSTOM_OP_IMPL(divide_bp, 3, 2, false, 0, 0) { auto x = INPUT_VARIABLE(0); auto y = INPUT_VARIABLE(1); auto epsNext = INPUT_VARIABLE(2); auto gradX = OUTPUT_VARIABLE(0); auto gradY = OUTPUT_VARIABLE(1); /* auto lambdaY = LAMBDA_TTT(_e, _x, _y) { return _e * -_x / (_y * _y); }; */ if (x->isSameShape(y)) { // PWT case case // X gradient //epsNext->applyPairwiseLambda(y, lambdaX, gradX); gradX->assign((*epsNext) / (*y)); // Y gradient //epsNext->applyTriplewiseLambda(x, y, lambdaY, gradY); gradY->assign((*epsNext) * (*x) / ((*y) * (*y))); gradY->applyTransform(transform::Neg, *gradY); } else if (y->isScalar()) { // scalar case auto tmp = epsNext->reduceNumber(reduce::Sum); auto tmpX = x->reduceNumber(reduce::Sum); //tmpX.printBuffer("SumX"); //tmp.printBuffer("Sum Eps"); gradY->assign(tmp * tmpX / ((*y) * (*y))); gradY->applyTransform(transform::Neg, *gradY); //epsNext->applyLambda(lambdaS, *gradX); epsNext->applyScalarArr(scalar::Divide, *y, *gradX); } else { // broadcast case auto preX = *epsNext / *y; NDArray negX(*x); x->applyTransform(transform::Neg, negX); auto preY = *epsNext * negX / ((*y) * (*y)); auto axisX = ShapeUtils::evalBroadcastBackwardAxis(x->shapeInfo(), epsNext->shapeInfo()); auto axisY = ShapeUtils::evalBroadcastBackwardAxis(y->shapeInfo(), epsNext->shapeInfo()); if (axisX.size() > 0) { auto sum = preX.reduceAlongDimension(reduce::Sum, axisX); gradX->assign(sum); } else gradX->assign(preX); if (axisY.size() > 0) { auto sum = preY.reduceAlongDimension(reduce::Sum, axisY); gradY->assign(sum); } else gradY->assign(preY); } return Status::OK(); } DECLARE_SHAPE_FN(divide_bp) { auto x = inputShape->at(0); auto y = inputShape->at(1); auto e = inputShape->at(2); // eps always has shape of x // grad always has shape of y Nd4jLong *shapeE; Nd4jLong *shapeG; COPY_SHAPE(x, shapeE); COPY_SHAPE(y, shapeG); return SHAPELIST(CONSTANT(shapeE), CONSTANT(shapeG)); } } } #endif