/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include "mkldnnUtils.h" #include namespace sd { namespace ops { namespace platforms { ////////////////////////////////////////////////////////////////////////// static void deconv2dMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* bias, NDArray* output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int paddingMode, const bool isNCHW, const int wFormat) { // mkl supports weights format [oC, iC, kH, kW] only int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH); dnnl::memory::dims strides = { sH, sW }; dnnl::memory::dims padding = { pH, pW }; dnnl::memory::dims padding_r = { (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW }; dnnl::memory::dims dilation = { dH-1, dW-1 }; std::vector permut; if(0 == wFormat) permut = {2,3,0,1}; // [kH, kW, oC, iC] -> [oC, iC, kH, kW] else if(1 == wFormat) permut = {1,0,2,3}; // [iC, oC, kH, kW] -> [oC, iC, kH, kW] else permut = {3,0,1,2}; // [iC, kH, kW, oC] -> [oC, iC, kH, kW] // input type dnnl::memory::data_type xType; if(input->dataType() == DataType::FLOAT32) xType = dnnl::memory::data_type::f32; else if(input->dataType() == DataType::HALF) xType = dnnl::memory::data_type::f16; else if(input->dataType() == DataType::UINT8) xType = dnnl::memory::data_type::u8; else xType = dnnl::memory::data_type::s8; // weights type dnnl::memory::data_type wType = xType; if(xType == dnnl::memory::data_type::u8) wType = dnnl::memory::data_type::s8; // output and bias type (have the same types) dnnl::memory::data_type zType; if(output->dataType() == DataType::FLOAT32) zType = dnnl::memory::data_type::f32; else if(output->dataType() == DataType::HALF) zType = dnnl::memory::data_type::f16; else if(output->dataType() == DataType::UINT8) zType = dnnl::memory::data_type::u8; else if(output->dataType() == DataType::INT8) zType = dnnl::memory::data_type::s8; else zType = dnnl::memory::data_type::s32; dnnl::memory::format_tag xFormatMkl = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc; dnnl::memory::format_tag wFormatMkl = dnnl::memory::format_tag::oihw; dnnl::memory::dims xDims = {bS, iC, iH, iW}; dnnl::memory::dims wDims = {oC, iC, kH, kW}; dnnl::memory::dims zDims = {bS, oC, oH, oW}; // memory descriptors for arrays // input dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl); mkldnnUtils::setBlockStrides(*input, x_user_md); // weights dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl); mkldnnUtils::setBlockStrides(*weights, w_user_md, permut); // bias dnnl::memory::desc b_mkl_md; if(bias != nullptr) b_mkl_md = dnnl::memory::desc({oC}, zType, dnnl::memory::format_tag::x); // output dnnl::memory::desc z_mkl_md = dnnl::memory::desc(zDims, zType, dnnl::memory::format_tag::any); dnnl::memory::desc z_user_md = dnnl::memory::desc(zDims, zType, xFormatMkl); mkldnnUtils::setBlockStrides(*output, z_user_md); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // operation primitive description dnnl::deconvolution_forward::desc op_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::deconvolution_direct, x_mkl_md, w_mkl_md, b_mkl_md, z_mkl_md, strides, dilation, padding, padding_r); dnnl::deconvolution_forward::primitive_desc op_prim_desc(op_desc, engine); // arguments (memory buffers) necessary for calculations std::unordered_map args; dnnl::stream stream(engine); // provide memory buffers and check whether reorder is required // input mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_prim_desc.src_desc(), args[DNNL_ARG_SRC]); // weights mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); // bias if(bias != nullptr) { auto b_mkl_mem = dnnl::memory(b_mkl_md, engine, const_cast(bias->buffer())); args[DNNL_ARG_BIAS] = b_mkl_mem; } // output auto z_user_mem = mkldnnUtils::loadDataToMklStream(*output, engine, stream, z_user_md, op_prim_desc.dst_desc(), args[DNNL_ARG_DST]); // run calculations dnnl::deconvolution_forward(op_prim_desc).execute(stream, args); // reorder outputs if necessary if (op_prim_desc.dst_desc() != z_user_mem.get_desc()) dnnl::reorder(args[DNNL_ARG_DST], z_user_mem).execute(stream, args[DNNL_ARG_DST], z_user_mem); stream.wait(); // shape::printArray(z_mkl_mem.map_data(),8); } ////////////////////////////////////////////////////////////////////////// static void deconv2dBpMKLDNN(const NDArray* input, const NDArray* weights, const NDArray* gradO, NDArray* gradI, NDArray* gradW, NDArray* gradB, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int paddingMode, const bool isNCHW, const int wFormat) { // mkl supports weights/gradW in [oC, iC, kH, kW] format only int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH); dnnl::memory::dims strides = { sH, sW }; dnnl::memory::dims padding = { pH, pW }; dnnl::memory::dims padding_r = { (iH - 1) * sH - oH + kH - pH, (iW - 1) * sW - oW + kW - pW }; dnnl::memory::dims dilation = { dH-1, dW-1 }; std::vector permut; if(0 == wFormat) permut = {2,3,0,1}; // [kH, kW, oC, iC] -> [oC, iC, kH, kW] else if(1 == wFormat) permut = {1,0,2,3}; // [iC, oC, kH, kW] -> [oC, iC, kH, kW] else permut = {3,0,1,2}; // [iC, kH, kW, oC] -> [oC, iC, kH, kW] // input type dnnl::memory::data_type xType = input->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // weights type dnnl::memory::data_type wType = weights->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradO type dnnl::memory::data_type gradOType = gradO->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradI type dnnl::memory::data_type gradIType = gradI->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradW type dnnl::memory::data_type gradWType = gradW->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16; // gradB type dnnl::memory::data_type gradBType = gradB != nullptr ? (gradB->dataType() == DataType::FLOAT32 ? dnnl::memory::data_type::f32 : dnnl::memory::data_type::bf16) : dnnl::memory::data_type::f32; dnnl::memory::format_tag xFormatMkl = isNCHW ? dnnl::memory::format_tag::nchw : dnnl::memory::format_tag::nhwc; dnnl::memory::format_tag wFormatMkl = dnnl::memory::format_tag::oihw; dnnl::memory::dims xDims = {bS, iC, iH, iW}; dnnl::memory::dims wDims = {oC, iC, kH, kW}; dnnl::memory::dims zDims = {bS, oC, oH, oW}; // memory descriptors for arrays // input dnnl::memory::desc x_mkl_md = dnnl::memory::desc(xDims, xType, dnnl::memory::format_tag::any); dnnl::memory::desc x_user_md = dnnl::memory::desc(xDims, xType, xFormatMkl); mkldnnUtils::setBlockStrides(*input, x_user_md); // weights dnnl::memory::desc w_mkl_md = dnnl::memory::desc(wDims, wType, dnnl::memory::format_tag::any); dnnl::memory::desc w_user_md = dnnl::memory::desc(wDims, wType, wFormatMkl); mkldnnUtils::setBlockStrides(*weights, w_user_md, permut); // gradO dnnl::memory::desc gradO_mkl_md = dnnl::memory::desc(zDims, gradOType, dnnl::memory::format_tag::any); dnnl::memory::desc gradO_user_md = dnnl::memory::desc(zDims, gradOType, xFormatMkl); mkldnnUtils::setBlockStrides(*gradO, gradO_user_md); // gradI dnnl::memory::desc gradI_mkl_md = dnnl::memory::desc(xDims, gradIType, dnnl::memory::format_tag::any); dnnl::memory::desc gradI_user_md = dnnl::memory::desc(xDims, gradIType, xFormatMkl); mkldnnUtils::setBlockStrides(*gradI, gradI_user_md); // gradW dnnl::memory::desc gradW_mkl_md = dnnl::memory::desc(wDims, gradWType, dnnl::memory::format_tag::any); dnnl::memory::desc gradW_user_md = dnnl::memory::desc(wDims, gradWType, wFormatMkl); mkldnnUtils::setBlockStrides(*gradW, gradW_user_md, permut); // gradB dnnl::memory::desc gradB_mkl_md; if(gradB != nullptr) gradB_mkl_md = dnnl::memory::desc({oC}, gradBType, dnnl::memory::format_tag::x); auto engine = mkldnnUtils::getEngine(LaunchContext::defaultContext()->engine()); // forward primitive description dnnl::deconvolution_forward::desc op_ff_desc(dnnl::prop_kind::forward_inference, dnnl::algorithm::deconvolution_direct, x_mkl_md, w_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r); dnnl::deconvolution_forward::primitive_desc op_ff_prim_desc(op_ff_desc, engine); // backward data primitive description dnnl::deconvolution_backward_data::desc op_data_bp_desc(dnnl::algorithm::deconvolution_direct, gradI_mkl_md, w_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r); dnnl::deconvolution_backward_data::primitive_desc op_data_bp_prim_desc(op_data_bp_desc, engine, op_ff_prim_desc); // backward weights primitive description dnnl::deconvolution_backward_weights::desc op_weights_bp_desc(dnnl::algorithm::deconvolution_direct, x_mkl_md, gradW_mkl_md, gradB_mkl_md, gradO_mkl_md, strides, dilation, padding, padding_r); dnnl::deconvolution_backward_weights::primitive_desc op_weights_bp_prim_desc(op_weights_bp_desc, engine, op_ff_prim_desc); // arguments (memory buffers) necessary for calculations std::unordered_map args; dnnl::stream stream(engine); // provide memory buffers and check whether reorder is required // input mkldnnUtils::loadDataToMklStream(*input, engine, stream, x_user_md, op_weights_bp_prim_desc.src_desc(), args[DNNL_ARG_SRC]); // weights mkldnnUtils::loadDataToMklStream(*weights, engine, stream, w_user_md, op_data_bp_prim_desc.weights_desc(), args[DNNL_ARG_WEIGHTS]); // gradO auto gradO_user_mem = dnnl::memory(gradO_user_md, engine, const_cast(gradO->buffer())); const bool gradOReorderW = op_weights_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc(); const bool gradOReorderD = op_data_bp_prim_desc.diff_dst_desc() != gradO_user_mem.get_desc(); auto gradO_mkl_memW = gradOReorderW ? dnnl::memory(op_weights_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem; auto gradO_mkl_memD = gradOReorderD ? dnnl::memory(op_data_bp_prim_desc.diff_dst_desc(), engine) : gradO_user_mem; if (gradOReorderW) dnnl::reorder(gradO_user_mem, gradO_mkl_memW).execute(stream, gradO_user_mem, gradO_mkl_memW); if (gradOReorderD) dnnl::reorder(gradO_user_mem, gradO_mkl_memD).execute(stream, gradO_user_mem, gradO_mkl_memD); args[DNNL_ARG_DIFF_DST] = gradO_mkl_memD; // gradI auto gradI_user_mem = mkldnnUtils::loadDataToMklStream(*gradI, engine, stream, gradI_user_md, op_data_bp_prim_desc.diff_src_desc(), args[DNNL_ARG_DIFF_SRC]); // gradW auto gradW_user_mem = mkldnnUtils::loadDataToMklStream(*gradW, engine, stream, gradW_user_md, op_weights_bp_prim_desc.diff_weights_desc(), args[DNNL_ARG_DIFF_WEIGHTS]); // gradB if(gradB != nullptr) { auto gradB_mkl_mem = dnnl::memory(gradB_mkl_md, engine, gradB->buffer()); args[DNNL_ARG_DIFF_BIAS] = gradB_mkl_mem; } // run backward data calculations dnnl::deconvolution_backward_data(op_data_bp_prim_desc).execute(stream, args); if(gradOReorderW || gradOReorderD) args[DNNL_ARG_DIFF_DST] = gradO_mkl_memW; // run backward weights calculations dnnl::deconvolution_backward_weights(op_weights_bp_prim_desc).execute(stream, args); // reorder gradI if necessary if (op_data_bp_prim_desc.diff_src_desc() != gradI_user_mem.get_desc()) dnnl::reorder(args[DNNL_ARG_DIFF_SRC], gradI_user_mem).execute(stream, args[DNNL_ARG_DIFF_SRC], gradI_user_mem); if (op_weights_bp_prim_desc.diff_weights_desc() != gradW_user_mem.get_desc()) dnnl::reorder(args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem).execute(stream, args[DNNL_ARG_DIFF_WEIGHTS], gradW_user_mem); stream.wait(); // shape::printArray(z_mkl_mem.map_data(),8); } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(deconv2d, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, oC, iC], [iC, oC, kH, kW], [iC, kH, kW, oC] auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto output = OUTPUT_VARIABLE(0); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW) REQUIRE_TRUE(input->rankOf() == 4, 0, "CUSTOM DECONV2D_MKLDNN OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 4, 0, "CUSTOM DECONV2D_MKLDNN OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf()); int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) height int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, oC, iC], 1 - [iC, oC, kH, kW], 2 - [iC, kH, kW, oC] int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, oC, iC); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV2D_MKLDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if (bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DECONV2D_MKLDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); if(paddingMode){ // SAME //Note: we're intentionally swapping iH and oH, to calculated the padding for a"normal" conv (not deconv) forward pass ConvolutionUtils::calcPadding2D(pH, pW, iH, iW, oH, oW, kH, kW, sH, sW, dH, dW); } deconv2dMKLDNN(input, weights, bias, output, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW, wFormat); return Status::OK(); } PLATFORM_CHECK(deconv2d, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); auto weights = INPUT_VARIABLE(1); auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; auto output = INPUT_VARIABLE(0); int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME const DataType xType = input->dataType(); const DataType wType = weights->dataType(); const DataType zType = output->dataType(); const DataType bType = bias != nullptr ? bias->dataType() : zType; return block.isUseMKLDNN() && (dH <= 1 && dW <= 1 && !paddingMode) && ( (xType==DataType::FLOAT32 && wType==DataType::FLOAT32 && bType==DataType::FLOAT32 && zType==DataType::FLOAT32) || ((xType==DataType::UINT8 || xType==DataType::INT8) && wType==DataType::INT8 && (zType==DataType::UINT8 || zType==DataType::INT8 || zType==DataType::INT32 || zType==DataType::FLOAT32) && bType == zType) ); } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(deconv2d_bp, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, oC, iC], [iC, oC, kH, kW], [iC, kH, kW, oC] auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCDHW), gradI auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, oC, iC], [iC, oC, kH, kW], [iC, kH, kW, oC] auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC] REQUIRE_TRUE(input->rankOf() == 4, 0, "CUSTOM DECONV2D_MKLDNN_BP OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 4, 0, "CUSTOM DECONV2D_MKLDNN_BP OP: rank of weights array must be equal to 4 , but got %i instead !", weights->rankOf()); REQUIRE_TRUE(gradO->rankOf() == 4, 0, "CUSTOM DECONV2D_MKLDNN_BP OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf()); int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) height int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, oC, iC], 1 - [iC, oC, kH, kW], 2 - [iC, kH, kW, oC] int bS, iC, iH, iW, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWoC, indWiC, indWkH, indOoH); int trueoH, trueoW; // true output height, width ConvolutionUtils::calcOutSizeDeconv2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, paddingMode); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1}); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, oC, iC); REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "CUSTOM DECONV2D_MKLDNN_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str()); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "CUSTOM DECONV2D_MKLDNN_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if(bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM DECONV2D_MKLDNN_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); if(paddingMode){ // SAME //Note: we're intentionally swapping iH and oH, to calculated the padding for a"normal" conv (not deconv) forward pass ConvolutionUtils::calcPadding2D(pH, pW, iH, iW, oH, oW, kH, kW, sH, sW, dH, dW); } deconv2dBpMKLDNN(input, weights, gradO, gradI, gradW, gradB, kH, kW, sH, sW, pH, pW, dH, dW, paddingMode, isNCHW, wFormat); return Status::OK(); } PLATFORM_CHECK(deconv2d_bp, ENGINE_CPU) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, oC, iC], [iC, oC, kH, kW], [iC, kH, kW, oC] auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCDHW), gradI auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, oC, iC], [iC, oC, kH, kW], [iC, kH, kW, oC] auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC] int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME const DataType xType = input->dataType(); const DataType wType = weights->dataType(); const DataType gradOType = gradO->dataType(); const DataType gradIType = gradI->dataType(); const DataType gradWType = gradW->dataType(); const DataType gradBType = gradB != nullptr ? gradB->dataType() : DataType::FLOAT32; return block.isUseMKLDNN() && (dH <= 1 && dW <= 1 && !paddingMode) && ((xType==DataType::FLOAT32 || xType==DataType::BFLOAT16) && (wType==DataType::FLOAT32 || wType==DataType::BFLOAT16) && (gradOType==DataType::FLOAT32 || gradOType==DataType::BFLOAT16) && (gradIType==DataType::FLOAT32 || gradIType==DataType::BFLOAT16) && (gradWType==DataType::FLOAT32 || gradWType==DataType::BFLOAT16) && (gradBType==DataType::FLOAT32 || gradBType==DataType::BFLOAT16) ); } } } }