/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by george@skymind.io on 2/21/2018. // Modified by sgazeos@gmail.com on 4/4/2018 #include #if NOT_EXCLUDED(OP_sufficient_statistics) #include #include namespace sd { namespace ops { CUSTOM_OP_IMPL(sufficient_statistics, 2, 3, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto axisVector = INPUT_VARIABLE(1); auto dataCount = OUTPUT_VARIABLE(0); auto sum = OUTPUT_VARIABLE(1); auto squares = OUTPUT_VARIABLE(2); std::vector axis(axisVector->lengthOf());//*block.getIArguments(); // axis might be dynamic (i.e. tf mode) helpers::adjustAxis(input->rankOf(), axisVector, axis); input->reduceAlongDimension(reduce::SquaredNorm, *squares, axis); input->reduceAlongDimension(reduce::Sum, *sum, axis); auto count = NDArrayFactory::create(input->dataType(), input->lengthOf() / sum->lengthOf()); dataCount->assign(count); if (block.numT() > 0) { auto shift = OUTPUT_VARIABLE(3); shift->assign(T_ARG(0)); } return Status::OK(); } DECLARE_TYPES(sufficient_statistics) { getOpDescriptor() ->setAllowedInputTypes(0, {ALL_INTS, ALL_FLOATS}); getOpDescriptor() ->setAllowedInputTypes(1, {DataType::INT32, DataType::INT64}); getOpDescriptor() ->setAllowedOutputTypes(0, DataType::INHERIT); getOpDescriptor() ->setAllowedOutputTypes(1, DataType::INHERIT); getOpDescriptor() ->setAllowedOutputTypes(2, DataType::INHERIT); } DECLARE_SHAPE_FN(sufficient_statistics) { auto axisVector = INPUT_VARIABLE(1); std::vector axis(axisVector->lengthOf()); auto input = INPUT_VARIABLE(0); helpers::adjustAxis(input->rankOf(), axisVector, axis); //std::vector dims = ShapeUtils::evalDimsToExclude(input->rankOf(), {axis}); auto scalarShape = ConstantShapeHelper::getInstance().scalarShapeInfo(ArrayOptions::dataType(inputShape->at(0))); auto sumShape = ShapeUtils::evalReduceShapeInfo('c', axis, *input, false, false, block.workspace()); auto squareShape = ShapeUtils::evalReduceShapeInfo('c', axis, *input, false, false, block.workspace()); auto shapeList = SHAPELIST(scalarShape, sumShape, squareShape); if (block.numT() > 0) shapeList->push_back(ConstantShapeHelper::getInstance().scalarShapeInfo(ArrayOptions::dataType(inputShape->at(0)))); return shapeList; } } } #endif