# PyDL4J - Java dependency management for Python applications [![Join the chat at https://gitter.im/deeplearning4j/deeplearning4j](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/deeplearning4j/deeplearning4j?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![PyPI version](https://badge.fury.io/py/pydl4j.svg)](https://badge.fury.io/py/pydl4j) PyDL4J is a lightweight package manager for the DL4J ecosystem which allows you to focus on building Python applications on top of `pyjnius` without worrying about the details. You can use PyDL4J for the following tasks: - Automatically manage JARs for your Python projects, such as `jumpy` or `pydatavec`. - Configure your Python DL4J environment through the PyDL4J command line interface, - Use PyDL4J as a replacement for Maven for basic tasks, from Python. --------- # Installation PyDL4J is on PyPI, so you can install it with `pip`: ```bash pip install pydl4j ``` Alternatively, you can build the project locally as follows: ```bash git clone https://www.github.com/eclipse/deeplearning4j.git cd deeplearning4j/pydl4j python setup.py install ``` As regular user, this will likely be enough for your needs. In fact, most of the time you will not interact with PyDL4J directly at all. All other Python projects maintained by Skymind use PyDL4J under the hood and will install this dependency for you. # PyDL4J command line interface (CLI) Installing PyDL4J exposes a command line tool called `pydl4j`. You can use this tool to configure your PyDL4J environment. If you don't use the CLI, a default configuration will be used instead. **Note:** If you intend to use the CLI, make sure to have [`docker` installed](https://docs.docker.com/install/) on your machine. To initialize a new PyDL4J configuration, type ```bash pydl4j init ██████╗ ██╗ ██╗██████╗ ██╗██╗ ██╗ ██╗ ██╔══██╗╚██╗ ██╔╝██╔══██╗██║██║ ██║ ██║ ██████╔╝ ╚████╔╝ ██║ ██║██║███████║ ██║ ██╔═══╝ ╚██╔╝ ██║ ██║██║╚════██║██ ██║ ██║ ██║ ██████╔╝███████╗██║╚█████╔╝ ╚═╝ ╚═╝ ╚═════╝ ╚══════╝╚═╝ ╚════╝ pydl4j is a system to manage your DL4J dependencies from Python! Which DL4J version do you want to use for your Python projects? (default '1.0.0-beta2'): ``` Follow the instructions provided by the CLI. At the end of this process you'll see a JSON object carrying your configuration. ```bash This is your current settings file config.json: { "dl4j_core": true, "nd4j_backend": "cpu", "spark_version": "2", "datavec": false, "spark": true, "scala_version": "2.11", "dl4j_version": "1.0.0-beta2" } Does this look good? (default 'y')[y/n]: ``` If not configured otherwise, this configuration file will be stored at `~/.deeplearning4j/pydl4j/config.json`. This configuration file is a lightweight version for Python users to avoid the cognitive load of the widely used Project Object Model (POM) widely used in Java. PyDL4J will translate your configuration into the right format internally to provide you with the tools you need. Finally, to install the Java dependencies configured in your `config.json` you use the following command: ```bash pydl4j install ``` This tool will install all necessary JARs into `~/.deeplearning4j/pydl4j` for you, by running `mvn` in a Docker container, and setting your classpath so that your `pyjnius` Python applications can access them. # PyDL4J API # Example ```python import pydl4j import jnius_config from pydl4j import mvn pydl4j.set_context('my_python_app_name') # Fetch latest version of datavec.datavec-api from Maven central pydl4j.mvn_install(group='datavec', artifact='datavec-api') # Or fetch a specific version: pydl4j.mvn_install(group='datavec', artifact='datavec-api', version='1.0.0-beta') jnius_config.set_classpath(pydl4j.get_dir()) ``` # List all artifacts in a group ```python mvn.get_artifacts(group_id) ``` # Example ```python mvn.get_artifacts('datavec') ``` ```bash ['datavec-api', 'datavec-arrow', 'datavec-camel', 'datavec-cli', 'datavec-data', 'datavec-data-audio', 'datavec-data-codec', 'datavec-d ata-image', 'datavec-data-nlp', 'datavec-dataframe', 'datavec-excel', 'datavec-geo', 'datavec-hadoop', 'datavec-jdbc', 'datavec-local', 'datavec-nd4j-common', 'datavec-parent', 'datavec-perf', 'datavec-spark-inference-client', 'datavec-spark-inference-model', 'datavec-s park-inference-parent', 'datavec-spark-inference-server_2.10', 'datavec-spark-inference-server_2.11', 'datavec-spark_2.10', 'datavec-sp ark_2.11'] ``` # List all versions of an artifact ```python mvn.get_versions(group_id, artifact_id) ``` # Example ```python mvn.get_versions('datavec', 'datavec-api') ``` ```bash ['0.4.0', '0.5.0', '0.6.0', '0.7.0', '0.7.1', '0.7.2', '0.8.0', '0.9.0', '0.9.1', '1.0.0-alpha', '1.0.0-beta', '1.0.0-beta2'] ``` # Get latest version of an artifact ```python mvn.get_latest_version(group_id, artifact_id) ``` # Example ```python mvn.get_latest_version('datavec', 'datavec-api') ``` ```bash '1.0.0-beta2' ``` # List all installed jars ```python pydl4j.get_jars() ``` # Uninstall a jar ```python # Find jar name from pydl4j.get_jars() pydl4j.uninstall(jar_name) ``` # Uninstall all jars: ```python pydl4j.clear_context() ```