/******************************************************************************* * Copyright (c) 2019 Konduit K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include "cudnnUtils.h" #include namespace sd { namespace ops { namespace platforms { ////////////////////////////////////////////////////////////////////////// static void depthwiseConv2dCUDNN(const LaunchContext* context, const NDArray* input, const NDArray* weights, const NDArray* bias, NDArray* output, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int paddingMode, const bool isNCHW) { // cudnn supports only following case: mC = 1, oC = iC (groupCount == iC) // input [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc // weights [iC, mC, kH, kW] // bias [oC], may be nullptr // output [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc // oC = iC*mC int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(1); auto handle = reinterpret_cast(context->getCuDnnHandle()); cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream()); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: can't set stream for cuDNN", err); cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC; // input descriptor cudnnTensorDescriptor_t x; cudnnCreateTensorDescriptor(&x); if(input->ews() == 1 && input->ordering() == 'c') err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW); else err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1)); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input failed", err); // weights descriptor cudnnFilterDescriptor_t w; cudnnCreateFilterDescriptor(&w); err = cudnnSetFilter4dDescriptor(w, cudnnDataType(weights->dataType()), CUDNN_TENSOR_NCHW, iC, mC, kH, kW); if(err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetFilter4dDescriptor failed", err); // output descriptor cudnnTensorDescriptor_t z; cudnnCreateTensorDescriptor(&z); if(output->ews() == 1 && output->ordering() == 'c') err = cudnnSetTensor4dDescriptor(z, format, cudnnDataType(output->dataType()), bS, oC, oH, oW); else err = cudnnSetTensor4dDescriptorEx(z, cudnnDataType(output->dataType()), bS, oC, oH, oW, output->strideAt(0), output->strideAt(indIOioC), output->strideAt(indOoH), output->strideAt(indOoH + 1)); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for output failed", err); // description of convolution cudnnConvolutionDescriptor_t conv; cudnnCreateConvolutionDescriptor(&conv); err = cudnnSetConvolution2dDescriptor(conv, pH, pW, sH, sW, dH, dW, CUDNN_CROSS_CORRELATION, cudnnDataType(output->dataType())); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetConvolution2dDescriptor failed", err); err = cudnnSetConvolutionGroupCount(conv, iC); // set number of groups (depthwise mode) in description of convolution, groupCount == iC if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetConvolutionGroupCount failed", err); // algorithm description cudnnConvolutionFwdAlgo_t algo; err = cudnnGetConvolutionForwardAlgorithm(*handle, x, w, conv, z, CUDNN_CONVOLUTION_FWD_PREFER_FASTEST, 0, &algo); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnGetConvolutionForwardAlgorithm failed", err); // allocate auxiliary device memory, abbreviation ws means workspace size_t wsSize; err = cudnnGetConvolutionForwardWorkspaceSize(*handle, x, w, conv, z, algo, &wsSize); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnGetConvolutionForwardWorkspaceSize failed", err); void* wsData; auto cudaErr = cudaMalloc(&wsData, wsSize); if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudaMalloc for auxiliary workspace memory failed", cudaErr); // provide scaling parameters const float alpha32(1), beta32(0); const double alpha64(1), beta64(0); const void* alpha = output->sizeOfT() <= 4 ? reinterpret_cast(&alpha32) : reinterpret_cast(&alpha64); const void* beta = output->sizeOfT() <= 4 ? reinterpret_cast(&beta32) : reinterpret_cast(&beta64); NDArray::prepareSpecialUse({output}, {input, weights, bias}); // run calculation err = cudnnConvolutionForward(*handle, alpha, x, input->specialBuffer(), w, weights->specialBuffer(), conv, algo, wsData, wsSize, beta, z, output->specialBuffer()); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnConvolutionForward failed", err); // add bias if it is present if (bias != nullptr) { cudnnTensorDescriptor_t b; cudnnCreateTensorDescriptor(&b); // err = cudnnSetTensor4dDescriptor(b, format, cudnnDataType(bias->dataType()), 1, isNCHW ? bias->lengthOf() : 1, 1, isNCHW ? 1: bias->lengthOf()); err = cudnnSetTensor4dDescriptor(b, CUDNN_TENSOR_NCHW, cudnnDataType(bias->dataType()), 1, oC, 1, 1); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnSetTensor4dDescriptor for bias failed", err); err = cudnnAddTensor(*handle, alpha, b, bias->specialBuffer(), alpha, z, output->specialBuffer()); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudnnAddTensor bias failed", err); } // cudaErr = cudaStreamSynchronize(*context->getCudaStream()); // if (cudaErr != 0) // throw cuda_exception::build("depthwiseConv2dCUDNN: cudaStreamSynchronize failed !", cudaErr); cudaErr = cudaFree(wsData); if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dCUDNN: cudaFree for auxiliary workspace memory failed", cudaErr); NDArray::registerSpecialUse({output}, {input, weights, bias}); } ////////////////////////////////////////////////////////////////////////// static void depthwiseConv2dBpCUDNN(const LaunchContext* context, const NDArray* input, const NDArray* weights, const NDArray* gradO, NDArray* gradI, NDArray* gradW, NDArray* gradB, const int kH, const int kW, const int sH, const int sW, const int pH, const int pW, const int dH, const int dW, const int paddingMode, const bool isNCHW) { // cudnn supports only following case: mC = 1, oC = iC (groupCount == iC) // input, gradI [bS, iC, iH, iW] nchw or [bS, iH, iW, iC] nhwc // weights, gradW [iC, mC, kH, kW] // gradB [oC], may be nullptr // gradO [bS, oC, oH, oW] nchw or [bS, oH, oW, oC] nhwc // oC = iC*mC int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, output channels, output height/width; int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, 0, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(1); auto handle = reinterpret_cast(context->getCuDnnHandle()); cudnnStatus_t err = cudnnSetStream(*handle, *context->getCudaStream()); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: can't set stream for cuDNN", err); cudnnTensorFormat_t format = isNCHW ? CUDNN_TENSOR_NCHW : CUDNN_TENSOR_NHWC; // input descriptor cudnnTensorDescriptor_t x; cudnnCreateTensorDescriptor(&x); if(input->ews() == 1 && input->ordering() == 'c') err = cudnnSetTensor4dDescriptor(x, format, cudnnDataType(input->dataType()), bS, iC, iH, iW); else err = cudnnSetTensor4dDescriptorEx(x, cudnnDataType(input->dataType()), bS, iC, iH, iW, input->strideAt(0), input->strideAt(indIOioC), input->strideAt(indIiH), input->strideAt(indIiH + 1)); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for input failed", err); // gradO descriptor cudnnTensorDescriptor_t dz; cudnnCreateTensorDescriptor(&dz); if(gradO->ews() == 1 && gradO->ordering() == 'c') err = cudnnSetTensor4dDescriptor(dz, format, cudnnDataType(gradO->dataType()), bS, oC, oH, oW); else err = cudnnSetTensor4dDescriptorEx(dz, cudnnDataType(gradO->dataType()), bS, oC, oH, oW, gradO->strideAt(0), gradO->strideAt(indIOioC), gradO->strideAt(indOoH), gradO->strideAt(indOoH + 1)); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for gradO failed", err); // gradI descriptor cudnnTensorDescriptor_t dx; cudnnCreateTensorDescriptor(&dx); if(gradI->ews() == 1 && gradI->ordering() == 'c') err = cudnnSetTensor4dDescriptor(dx, format, cudnnDataType(gradI->dataType()), bS, iC, iH, iW); else err = cudnnSetTensor4dDescriptorEx(dx, cudnnDataType(gradI->dataType()), bS, iC, iH, iW, gradI->strideAt(0), gradI->strideAt(indIOioC), gradI->strideAt(indIiH), gradI->strideAt(indIiH + 1)); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor/cudnnSetTensor4dDescriptorEx for gradI failed", err); // gradW descriptor cudnnFilterDescriptor_t dw; cudnnCreateFilterDescriptor(&dw); err = cudnnSetFilter4dDescriptor(dw, cudnnDataType(gradW->dataType()), CUDNN_TENSOR_NCHW, iC, mC, kH, kW); if(err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetFilter4dDescriptor gradW failed", err); // description of convolution cudnnConvolutionDescriptor_t conv; cudnnCreateConvolutionDescriptor(&conv); err = cudnnSetConvolution2dDescriptor(conv, pH, pW, sH, sW, dH, dW, CUDNN_CROSS_CORRELATION, cudnnDataType(gradO->dataType())); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetConvolution2dDescriptor failed", err); err = cudnnSetConvolutionGroupCount(conv, iC); // set number of groups (depthwise mode) in description of convolution, groupCount == iC if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetConvolutionGroupCount failed", err); // gradW algorithm description cudnnConvolutionBwdFilterAlgo_t algoGradW; err = cudnnGetConvolutionBackwardFilterAlgorithm(*handle, x, dz, conv, dw, CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST, 0, &algoGradW); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardFilterAlgorithm failed", err); // gradI algorithm description cudnnConvolutionBwdDataAlgo_t algoGradI; err = cudnnGetConvolutionBackwardDataAlgorithm(*handle, dw, dz, conv, x, CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST, 0, &algoGradI); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardDataAlgorithm failed", err); // allocate auxiliary device memory for gradW calculation, abbreviation ws means workspace size_t wsGradWSize; err = cudnnGetConvolutionBackwardFilterWorkspaceSize(*handle, x, dz, conv, dw, algoGradW, &wsGradWSize); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardFilterWorkspaceSize failed", err); void* wsGradWData; auto cudaErr = cudaMalloc(&wsGradWData, wsGradWSize); if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaMalloc for auxiliary workspace memory wsGradWData failed", cudaErr); // allocate auxiliary device memory for gradI calculation, abbreviation ws means workspace size_t wsGradISize; err = cudnnGetConvolutionBackwardDataWorkspaceSize(*handle, dw, dz, conv, dx, algoGradI, &wsGradISize); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnGetConvolutionBackwardDataWorkspaceSize failed", err); void* wsGradIData; cudaErr = cudaMalloc(&wsGradIData, wsGradISize); if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaMalloc for auxiliary workspace memory wsGradIData failed", cudaErr); // provide scaling parameters const float alpha32(1), beta32(0); const double alpha64(1), beta64(0); const void* alpha = gradO->sizeOfT() <= 4 ? reinterpret_cast(&alpha32) : reinterpret_cast(&alpha64); const void* beta = gradO->sizeOfT() <= 4 ? reinterpret_cast(&beta32) : reinterpret_cast(&beta64); NDArray::prepareSpecialUse({gradI, gradW, gradB}, {input, weights, gradO}); // run calculation for gradB (if not nullptr) if(gradB != nullptr) { cudnnTensorDescriptor_t db; cudnnCreateTensorDescriptor(&db); // err = cudnnSetTensor4dDescriptor(db, format, cudnnDataType(gradB->dataType()), 1, isNCHW ? gradB->lengthOf() : 1, 1, isNCHW ? 1: gradB->lengthOf()); err = cudnnSetTensor4dDescriptor(db, CUDNN_TENSOR_NCHW, cudnnDataType(gradB->dataType()), 1, oC, 1, 1); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnSetTensor4dDescriptor for gradB failed", err); err = cudnnConvolutionBackwardBias(*handle, alpha, dz, gradO->specialBuffer(), beta, db, gradB->specialBuffer()); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnConvolutionBackwardBias failed", err); } // run calculation for gradW err = cudnnConvolutionBackwardFilter(*handle, alpha, x, input->specialBuffer(), dz, gradO->specialBuffer(), conv, algoGradW, wsGradWData, wsGradWSize, beta, dw, gradW->specialBuffer()); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnConvolutionBackwardFilter failed", err); // run calculation for gradI err = cudnnConvolutionBackwardData(*handle, alpha, dw, weights->specialBuffer(), dz, gradO->specialBuffer(), conv, algoGradI, wsGradIData, wsGradISize, beta, dx, gradI->specialBuffer()); if (err != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudnnConvolutionBackwardData failed", err); // cudaErr = cudaStreamSynchronize(*context->getCudaStream()); // if (cudaErr != 0) // throw cuda_exception::build("depthwiseConv2dBpCUDNN: cudaStreamSynchronize failed !", cudaErr); cudaErr = cudaFree(wsGradWData); if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaFree for auxiliary workspace memory wsGradWData failed", cudaErr); cudaErr = cudaFree(wsGradIData); if (cudaErr != 0) throw sd::cuda_exception::build("depthwiseConv2dBpCUDNN: cudaFree for auxiliary workspace memory wsGradIData failed", cudaErr); NDArray::registerSpecialUse({gradI, gradW, gradB}, {input, weights, gradO}); } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(depthwise_conv2d, ENGINE_CUDA) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] = iC*mC auto output = OUTPUT_VARIABLE(0); // [bS, oH, oW, iC*mC] (NHWC) or [bS, iC*mC, oH, oW] (NCHW) REQUIRE_TRUE(input->rankOf() == 4, 0, "DEPTHWISECONV2D CUDNN OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 4, 0, "DEPTHWISECONV2D CUDNN OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf()); int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) height int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *output, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(indWmC); // channels multiplier ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "DEPTHWISECONV2D CUDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); REQUIRE_TRUE(output->sizeAt(indIOioC) == iC*mC, 0, "DEPTHWISECONV2D CUDNN OP: the output_channels must be equal to input_channels * channels_multiplier = %i !", iC*mC); if (bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "DEPTHWISECONV2D CUDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); std::vector wPermut; // cudnn support format {oC, iC/groupCount, kH, kW} only, mC = 1, oC = iC (groupCount == iC) that is {iC, mC, kH, kW} in our case if(0 == wFormat) wPermut = {2,3,0,1}; // kH, kW, iC, mC -> iC, mC, kH, kW else if(1 == wFormat) wPermut = {1,0,2,3}; // mC, iC, kH, kW -> iC, mC, kH, kW else wPermut = {3,0,1,2}; // mC, kH, kW, iC -> iC, mC, kH, kW NDArray* newWeights = new NDArray(weights->ordering(), {iC, mC, kH, kW}, weights->dataType(), weights->getContext()); newWeights->assign(weights->permute(wPermut)); NDArray* newInput = input; NDArray* newGradI = nullptr; if(paddingMode == 1) // in same paddingMode cudnn doesn't support asymmetric left/right top/bottopm paddings checkConv2dCUDNNPadAsymmetric(newInput, newGradI, iH, iW, oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, isNCHW); depthwiseConv2dCUDNN(block.launchContext(), newInput, newWeights, bias, output, kH,kW,sH,sW,pH,pW,dH,dW, paddingMode, isNCHW); if(newInput != input) delete newInput; delete newWeights; return Status::OK(); } ////////////////////////////////////////////////////////////////////////// PLATFORM_CHECK(depthwise_conv2d, ENGINE_CUDA) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NHWC) or [bS, iC, iH, iW] (NCHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] = iC*mC const int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME, 2-CAUSAL const int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] const int mC = weights->sizeAt(0 == wFormat ? 3 : 0); const bool badInputType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF; const bool badWeightsType = weights->dataType() != DataType::DOUBLE && weights->dataType() != DataType::FLOAT32 && weights->dataType() != DataType::HALF; const bool badBiasType = bias == nullptr ? false : (bias->dataType() != DataType::DOUBLE && bias->dataType() != DataType::FLOAT32 && bias->dataType() != DataType::HALF); return mC == 1 && paddingMode != 2 && !badInputType && !badWeightsType && !badBiasType; } ////////////////////////////////////////////////////////////////////////// PLATFORM_IMPL(depthwise_conv2d_bp, ENGINE_CUDA) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next auto gradI = OUTPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW), epsilon auto gradW = OUTPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC] REQUIRE_TRUE(input->rankOf() == 4, 0, "DEPTHWISECONV2D_BP CUDNN OP: rank of input array must be equal to 4, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 4, 0, "DEPTHWISECONV2D_BP CUDNN OP: rank of weights array must be equal to 4, but got %i instead !", weights->rankOf()); REQUIRE_TRUE(gradO->rankOf() == 4, 0, "DEPTHWISECONV2D_BP CUDNN OP: rank of output gradients (next epsilon) array must be equal to 4, but got %i instead !", gradO->rankOf()); int kH = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) height int kW = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) width int sH = INT_ARG(2); // strides height int sW = INT_ARG(3); // strides width int pH = INT_ARG(4); // paddings height int pW = INT_ARG(5); // paddings width int dH = INT_ARG(6); // dilations height int dW = INT_ARG(7); // dilations width int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 1-NHWC, 0-NCHW int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] int bS, iC, iH, iW, mC, oC, oH, oW; // batch size, input channels, input height/width, channels multiplier(oC = iC*mC), output channels, output height/width int indIOioC, indIiH, indWmC, indWiC, indWkH, indOoH; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv2d(isNCHW, wFormat, *input, *gradO, bS, iC, iH, iW, oC, oH, oW, indIOioC, indIiH, indWiC, indWmC, indWkH, indOoH); mC = weights->sizeAt(indWmC); // channels multiplier int trueoH, trueoW; // correct output height, width ConvolutionUtils::calcOutSizePool2D(trueoH, trueoW, kH, kW, sH, sW, pH, pW, dH, dW, iH, iW, paddingMode); ConvolutionUtils::calcPadding2D(pH, pW, oH, oW, iH, iW, kH, kW, sH, sW, dH, dW, paddingMode); std::vector expectedGradOShape = ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoH,trueoW, 0,indIOioC,indOoH,indOoH+1}); std::vector expectedWeightsShape = ConvolutionUtils::expectWeightsShape(wFormat, kH, kW, iC, mC); REQUIRE_TRUE(gradO->isSameShape(expectedGradOShape), 0, "DEPTHWISECONV2D_BP CUDNN OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedGradOShape).c_str(), ShapeUtils::shapeAsString(gradO).c_str()); REQUIRE_TRUE(weights->isSameShape(expectedWeightsShape), 0, "DEPTHWISECONV2D_BP CUDNN OP: wrong shape of weights array, expected is %s, but got %s instead !", ShapeUtils::shapeAsString(expectedWeightsShape).c_str(), ShapeUtils::shapeAsString(weights).c_str()); if(bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "DEPTHWISECONV2D_BP CUDNN OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); std::vector wPermut, gradWPermut; // cudnn support format {oC, iC/groupCount, kH, kW} only, mC = 1, oC = iC (groupCount == iC) that is {iC, mC, kH, kW} if(0 == wFormat) { wPermut = {2,3,0,1}; // kH, kW, iC, mC -> iC, mC, kH, kW gradWPermut = {2,3,0,1}; // iC, mC, kH, kW -> kH, kW, iC, mC } else if(1 == wFormat) { wPermut = {1,0,2,3}; // mC, iC, kH, kW -> iC, mC, kH, kW gradWPermut = {1,0,2,3}; // iC, mC, kH, kW -> mC, iC, kH, kW } else { wPermut = {3,0,1,2}; // mC, kH, kW, iC -> iC, mC, kH, kW gradWPermut = {1,2,3,0}; // iC, mC, kH, kW -> mC, kH, kW, iC } NDArray* newGradW = new NDArray(gradW->ordering(), {iC, mC, kH, kW}, gradW->dataType(), gradW->getContext()); NDArray* newWeights = new NDArray(weights->ordering(), {iC, mC, kH, kW}, weights->dataType(), weights->getContext()); newWeights->assign(weights->permute(wPermut)); NDArray* newInput = input; NDArray* newGradI = gradI; if(paddingMode == 1) // in same paddingMode cudnn doesn't support asymmetric left/right top/bottopm paddings checkConv2dCUDNNPadAsymmetric(newInput, newGradI, iH, iW, oH, oW, kH, kW, sH, sW, pH, pW, dH, dW, isNCHW); depthwiseConv2dBpCUDNN(block.launchContext(), newInput, newWeights, gradO, newGradI, newGradW, gradB, kH,kW,sH,sW,pH,pW,dH,dW,paddingMode,isNCHW); newGradW->permutei(gradWPermut); gradW->assign(newGradW); if(newInput != input) { if(isNCHW) gradI->assign((*newGradI)({0,0, 0,0, 0,gradI->sizeAt(2), 0,gradI->sizeAt(3)})); else gradI->assign((*newGradI)({0,0, 0,gradI->sizeAt(1), 0,gradI->sizeAt(2), 0,0})); delete newInput; delete newGradI; } delete newWeights; delete newGradW; return Status::OK(); } PLATFORM_CHECK(depthwise_conv2d_bp, ENGINE_CUDA) { auto input = INPUT_VARIABLE(0); // [bS, iH, iW, iC] (NDHWC) or [bS, iC, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kH, kW, iC, mC], [mC, iC, kH, kW], [mC, kH, kW, iC] auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] = [iC*mC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oH, oW, oC] (NDHWC) or [bS, oC, oH, oW] (NCDHW), epsilon_next const int paddingMode = INT_ARG(8); // 0-VALID, 1-SAME, 2-CAUSAL const int isNCHW = block.getIArguments()->size() > 9 ? !INT_ARG(9) : 1; // INT_ARG(9): 0-NCHW, 1-NHWC const int wFormat = block.getIArguments()->size() > 10 ? INT_ARG(10) : 0; // 0 - [kH, kW, iC, mC], 1 - [mC, iC, kH, kW], 2 - [mC, kH, kW, iC] const int mC = weights->sizeAt(0 == wFormat ? 3 : 0); const bool badInputType = input->dataType() != DataType::DOUBLE && input->dataType() != DataType::FLOAT32 && input->dataType() != DataType::HALF; const bool badWeightsType = weights->dataType() != DataType::DOUBLE && weights->dataType() != DataType::FLOAT32 && weights->dataType() != DataType::HALF; const bool badGradOType = gradO->dataType() != DataType::DOUBLE && gradO->dataType() != DataType::FLOAT32 && gradO->dataType() != DataType::HALF; const bool badBiasType = bias == nullptr ? false : (bias->dataType() != DataType::DOUBLE && bias->dataType() != DataType::FLOAT32 && bias->dataType() != DataType::HALF); return mC == 1 && isNCHW && paddingMode != 2 && !badInputType && !badWeightsType && !badGradOType && !badBiasType; } } } }