mappings { frameworkName: "tensorflow" opName: "unique" inputFrameworkOpName: "UniqueV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "UniqueV2" } } mappings { frameworkName: "tensorflow" opName: "conv2d" inputFrameworkOpName: "Conv2D" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "filter" outputTensorName: "input" outputTensorName: "weights" inputToOutput { key: "input" value: "input" } inputToOutput { key: "weights" value: "filter" } ruleType: "tensor" inputFrameworkOpName: "Conv2D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 5 } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "wFormat" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "wFormat" argType: INT64 argIndex: 10 } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "stringnotequalsadapterrule" functionName: "stringnotequalsadapterrule" inputStringAttrName: "data_format" outputIntName: "isNCHW" inputFloatName: "data_format" inputToOutput { key: "isNCHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCHW" transformerArgs { name: "data_format" argIndex: 9 stringValue: "NCHW" } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 8 stringValue: "SAME" } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "dH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "dH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "dW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "dW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "kH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "kH" int64Value: -1 argType: INT64 } } inputFrameworkOpName: "Conv2D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "kW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "kW" int64Value: -1 argType: INT64 argIndex: 1 } } inputFrameworkOpName: "Conv2D" } } mappings { frameworkName: "tensorflow" opName: "random_poisson" inputFrameworkOpName: "RandomPoisson" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" inputTensorName: "rate" outputTensorName: "shape" outputTensorName: "lambda" inputToOutput { key: "shape" value: "shape" } inputToOutput { key: "lambda" value: "rate" } ruleType: "tensor" inputFrameworkOpName: "RandomPoisson" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "seed" outputIntName: "seed" inputDataTypeName: "dtype" outputDataTypeName: "dtype" inputToOutput { key: "seed" value: "seed" } inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "RandomPoisson" } } mappings { frameworkName: "tensorflow" opName: "maxpool2d" inputFrameworkOpName: "MaxPool" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "MaxPool" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 5 } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 6 } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 7 } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "extraParam0" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "extraParam0" int64Value: 1 argType: INT64 argIndex: 9 } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "stringnotequalsadapterrule" functionName: "stringnotequalsadapterrule" inputStringAttrName: "data_format" outputIntName: "isNCHW" inputFloatName: "data_format" inputToOutput { key: "isNCHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCHW" transformerArgs { name: "data_format" argIndex: 10 stringValue: "NCHW" } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 8 stringValue: "SAME" } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "kH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "kH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } inputFrameworkOpName: "MaxPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "kW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "kW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } inputFrameworkOpName: "MaxPool" } } mappings { frameworkName: "tensorflow" opName: "size" inputFrameworkOpName: "Size" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Size" } } mappings { frameworkName: "tensorflow" opName: "squaredsubtract" inputFrameworkOpName: "SquaredDifference" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "SquaredDifference" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "SquaredDifference" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "SquaredDifference" } } mappings { frameworkName: "tensorflow" opName: "randomuniform" inputFrameworkOpName: "StatelessRandomUniform" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" outputTensorName: "shape" inputToOutput { key: "shape" value: "shape" } ruleType: "tensor" inputFrameworkOpName: "StatelessRandomUniform" } rule { ruleName: "datatypetoint" functionName: "datatypetoint" outputIntName: "dtype" inputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "StatelessRandomUniform" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "StatelessRandomUniform" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "min" inputFloatName: "max" inputTensorName: "min" inputTensorName: "max" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } inputFrameworkOpName: "StatelessRandomUniform" } } mappings { frameworkName: "tensorflow" opName: "shift_bits" inputFrameworkOpName: "LeftShift" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "LeftShift" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "LeftShift" } } mappings { frameworkName: "tensorflow" opName: "isinf" inputFrameworkOpName: "IsInf" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "IsInf" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "IsInf" } } mappings { frameworkName: "tensorflow" opName: "digamma" inputFrameworkOpName: "Digamma" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Digamma" } } mappings { frameworkName: "tensorflow" opName: "random_shuffle" inputFrameworkOpName: "RandomShuffle" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" outputTensorName: "input" inputToOutput { key: "input" value: "value" } ruleType: "tensor" inputFrameworkOpName: "RandomShuffle" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "seed" outputIntName: "seeds" inputToOutput { key: "seeds" value: "seed" } ruleType: "attribute" inputFrameworkOpName: "RandomShuffle" } } mappings { frameworkName: "tensorflow" opName: "adjust_hue" inputFrameworkOpName: "AdjustHue" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "delta" outputTensorName: "input" outputTensorName: "delta" inputToOutput { key: "input" value: "images" } inputToOutput { key: "delta" value: "delta" } ruleType: "tensor" inputFrameworkOpName: "AdjustHue" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dimC" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dimC" int64Value: -1 argType: INT64 } } inputFrameworkOpName: "AdjustHue" } } mappings { frameworkName: "tensorflow" opName: "Assert" inputFrameworkOpName: "Assert" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "condition" outputTensorName: "input" inputToOutput { key: "input" value: "condition" } ruleType: "tensor" inputFrameworkOpName: "Assert" } } mappings { frameworkName: "tensorflow" opName: "matrix_determinant" inputFrameworkOpName: "MatrixDeterminant" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "MatrixDeterminant" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "MatrixDeterminant" } } mappings { frameworkName: "tensorflow" opName: "adjust_saturation" inputFrameworkOpName: "AdjustSaturation" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "scale" outputTensorName: "input" outputTensorName: "factor" inputToOutput { key: "input" value: "images" } inputToOutput { key: "factor" value: "scale" } ruleType: "tensor" inputFrameworkOpName: "AdjustSaturation" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dimC" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dimC" int64Value: -1 argType: INT64 } } inputFrameworkOpName: "AdjustSaturation" } } mappings { frameworkName: "tensorflow" opName: "ones_as" inputFrameworkOpName: "OnesLike" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "OnesLike" } rule { ruleName: "valuemapping" functionName: "valuemapping" outputIntName: "dataType" inputDataTypeName: "T" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "OnesLike" } } mappings { frameworkName: "tensorflow" opName: "scatter_min" inputFrameworkOpName: "TensorScatterMin" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" inputTensorName: "indices" inputTensorName: "updates" outputTensorName: "input" outputTensorName: "indices" outputTensorName: "updates" inputToOutput { key: "input" value: "tensor" } inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } ruleType: "tensor" inputFrameworkOpName: "TensorScatterMin" } } mappings { frameworkName: "tensorflow" opName: "squeeze" inputFrameworkOpName: "Squeeze" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Squeeze" } rule { ruleName: "listnumbertondarray" functionName: "listnumbertondarray" inputToOutput { key: "a" value: "squeeze_dims" } ruleType: "attribute" inputFrameworkOpName: "Squeeze" } rule { ruleName: "listnumbertolistnumber" functionName: "listnumbertolistnumber" outputIntName: "_a" inputToOutput { key: "_a" value: "squeeze_dims" } ruleType: "attribute" inputFrameworkOpName: "Squeeze" } } mappings { frameworkName: "tensorflow" opName: "stack" inputFrameworkOpName: "Pack" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "values" outputTensorName: "input" inputToOutput { key: "input" value: "values" } ruleType: "tensor" inputFrameworkOpName: "Pack" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "axis" outputIntName: "dimensions" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dimensions" value: "axis" } inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Pack" } } mappings { frameworkName: "tensorflow" opName: "unsorted_segment_prod" inputFrameworkOpName: "UnsortedSegmentProd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "UnsortedSegmentProd" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "numSegments" inputToOutput { key: "numSegments" value: "num_segments" } ruleType: "attribute" inputFrameworkOpName: "UnsortedSegmentProd" } } mappings { frameworkName: "tensorflow" opName: "subtract" inputFrameworkOpName: "Sub" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Sub" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Sub" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Sub" } } mappings { frameworkName: "tensorflow" opName: "not_equals" inputFrameworkOpName: "NotEqual" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "NotEqual" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "NotEqual" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "NotEqual" } } mappings { frameworkName: "tensorflow" opName: "expm1" inputFrameworkOpName: "Expm1" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Expm1" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Expm1" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Expm1" } } mappings { frameworkName: "tensorflow" opName: "relu6" inputFrameworkOpName: "Relu6" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "features" outputTensorName: "input" inputToOutput { key: "input" value: "features" } ruleType: "tensor" inputFrameworkOpName: "Relu6" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Relu6" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "cutoff" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } transformerArgs { name: "cutoff" argType: DOUBLE } } transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } transformerArgs { name: "cutoff" argType: DOUBLE } } inputFrameworkOpName: "Relu6" } } mappings { frameworkName: "tensorflow" opName: "reduce_sum" inputFrameworkOpName: "Sum" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Sum" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "keep_dims" outputBooleanName: "keepDims" inputToOutput { key: "keepDims" value: "keep_dims" } ruleType: "attribute" inputFrameworkOpName: "Sum" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" inputToOutput { key: "dimensions" value: "reduction_indices" } ruleType: "attribute" inputFrameworkOpName: "Sum" } } mappings { frameworkName: "tensorflow" opName: "dynamic_stitch" inputFrameworkOpName: "DynamicStitch" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "indices" outputTensorName: "index" outputTensorName: "input" inputToOutput { key: "index" value: "data" } inputToOutput { key: "input" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "DynamicStitch" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "N" outputIntName: "numPartitions" inputToOutput { key: "numPartitions" value: "N" } ruleType: "attribute" inputFrameworkOpName: "DynamicStitch" } } mappings { frameworkName: "tensorflow" opName: "argmax" inputFrameworkOpName: "ArgMax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "ArgMax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "keepDims" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "keepDims" argType: BOOL } } inputFrameworkOpName: "ArgMax" } } mappings { frameworkName: "tensorflow" opName: "expand_dims" inputFrameworkOpName: "ExpandDims" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "ExpandDims" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "dimensions" inputToOutput { key: "dimensions" value: "dim" } ruleType: "attribute" inputFrameworkOpName: "ExpandDims" } } mappings { frameworkName: "tensorflow" opName: "reduce_min" inputFrameworkOpName: "Min" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Min" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "keep_dims" outputBooleanName: "keepDims" inputToOutput { key: "keepDims" value: "keep_dims" } ruleType: "attribute" inputFrameworkOpName: "Min" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" inputToOutput { key: "dimensions" value: "reduction_indices" } ruleType: "attribute" inputFrameworkOpName: "Min" } } mappings { frameworkName: "tensorflow" opName: "space_to_batch" inputFrameworkOpName: "SpaceToBatch" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "paddings" outputTensorName: "input" outputTensorName: "padding" inputToOutput { key: "input" value: "input" } inputToOutput { key: "padding" value: "paddings" } ruleType: "tensor" inputFrameworkOpName: "SpaceToBatch" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "block_size" outputIntName: "blockSize" inputToOutput { key: "blockSize" value: "block_size" } ruleType: "attribute" inputFrameworkOpName: "SpaceToBatch" } } mappings { frameworkName: "tensorflow" opName: "bitwise_xor" inputFrameworkOpName: "BitwiseXor" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "BitwiseXor" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "BitwiseXor" } } mappings { frameworkName: "tensorflow" opName: "concat" inputFrameworkOpName: "ParallelConcat" rule { ruleName: "multiinputindex" functionName: "multiinputindex" inputTensorName: "values" outputTensorName: "input" inputToOutput { key: "input" value: "values" } ruleType: "tensor" inputFrameworkOpName: "ParallelConcat" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "isDynamicAxis" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "isDynamicAxis" argType: BOOL } } inputFrameworkOpName: "ParallelConcat" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "ParallelConcat" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "concatDimension" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "concatDimension" argType: INT64 } } inputFrameworkOpName: "ParallelConcat" } } mappings { frameworkName: "tensorflow" opName: "scatter_list" inputFrameworkOpName: "TensorArrayScatterV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" inputTensorName: "indices" inputTensorName: "flow_in" outputTensorName: "array" outputTensorName: "sizes" outputTensorName: "list" inputToOutput { key: "array" value: "value" } inputToOutput { key: "sizes" value: "indices" } inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayScatterV3" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayScatterV3" } } mappings { frameworkName: "tensorflow" opName: "scatter_list" inputFrameworkOpName: "TensorArrayScatterV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" inputTensorName: "indices" inputTensorName: "flow_in" outputTensorName: "array" outputTensorName: "sizes" outputTensorName: "list" inputToOutput { key: "array" value: "value" } inputToOutput { key: "sizes" value: "indices" } inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayScatterV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayScatterV2" } } mappings { frameworkName: "tensorflow" opName: "Pow" inputFrameworkOpName: "Pow" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Pow" } } mappings { frameworkName: "tensorflow" opName: "split" inputFrameworkOpName: "Split" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "split_dim" inputTensorName: "value" outputTensorName: "a" outputTensorName: "b" inputToOutput { key: "a" value: "split_dim" } inputToOutput { key: "b" value: "value" } ruleType: "tensor" inputFrameworkOpName: "Split" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "num_split" outputIntName: "numSplit" inputToOutput { key: "numSplit" value: "num_split" } ruleType: "attribute" inputFrameworkOpName: "Split" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "dimensions" inputToOutput { key: "dimensions" value: "split_dim" } ruleType: "attribute" inputFrameworkOpName: "Split" } } mappings { frameworkName: "tensorflow" opName: "Where" inputFrameworkOpName: "Where" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "condition" inputToOutput { key: "condition" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Where" } } mappings { frameworkName: "tensorflow" opName: "svd" inputFrameworkOpName: "Svd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Svd" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "compute_uv" inputBooleanName: "full_matrices" outputBooleanName: "computeUv" outputBooleanName: "fullUV" inputToOutput { key: "computeUv" value: "compute_uv" } inputToOutput { key: "fullUV" value: "full_matrices" } ruleType: "attribute" inputFrameworkOpName: "Svd" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "calcUV" inputBooleanName: "compute_uv" inputBooleanName: "full_matrices" outputBooleanName: "fullUV" inputToOutput { key: "calcUV" value: "compute_uv" } inputToOutput { key: "fullUV" value: "full_matrices" } ruleType: "attribute" inputFrameworkOpName: "Svd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "switchNum" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "switchNum" int64Value: 16 argType: INT64 argIndex: 2 } } inputFrameworkOpName: "Svd" } } mappings { frameworkName: "tensorflow" opName: "acosh" inputFrameworkOpName: "Acosh" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Acosh" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Acosh" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Acosh" } } mappings { frameworkName: "tensorflow" opName: "placeholder" inputFrameworkOpName: "Placeholder" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" ruleType: "tensor" inputFrameworkOpName: "Placeholder" } } mappings { frameworkName: "tensorflow" opName: "polygamma" inputFrameworkOpName: "Polygamma" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "a" inputTensorName: "x" outputTensorName: "n" outputTensorName: "input" inputToOutput { key: "n" value: "a" } inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Polygamma" } } mappings { frameworkName: "tensorflow" opName: "equals" inputFrameworkOpName: "ApproximateEqual" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "ApproximateEqual" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "ApproximateEqual" } } mappings { frameworkName: "tensorflow" opName: "stop_gradient" inputFrameworkOpName: "StopGradient" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "StopGradient" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "StopGradient" } } mappings { frameworkName: "tensorflow" opName: "scatter_add" inputFrameworkOpName: "TensorScatterAdd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" inputTensorName: "indices" inputTensorName: "updates" outputTensorName: "input" outputTensorName: "indices" outputTensorName: "updates" inputToOutput { key: "input" value: "tensor" } inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } ruleType: "tensor" inputFrameworkOpName: "TensorScatterAdd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "lock" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "lock" argType: BOOL } } inputFrameworkOpName: "TensorScatterAdd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "checkIndices" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "checkIndices" argType: BOOL argIndex: 1 } } inputFrameworkOpName: "TensorScatterAdd" } } mappings { frameworkName: "tensorflow" opName: "avgpool2d" inputFrameworkOpName: "AvgPool" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" outputTensorName: "input" inputToOutput { key: "input" value: "value" } ruleType: "tensor" inputFrameworkOpName: "AvgPool" } rule { ruleName: "stringnotequalsadapterrule" functionName: "stringnotequalsadapterrule" inputStringAttrName: "data_format" outputIntName: "isNCHW" inputFloatName: "data_format" inputToOutput { key: "isNCHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCHW" transformerArgs { name: "data_format" argIndex: 10 stringValue: "NCHW" } } inputFrameworkOpName: "AvgPool" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 8 stringValue: "SAME" } } inputFrameworkOpName: "AvgPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } inputFrameworkOpName: "AvgPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } inputFrameworkOpName: "AvgPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "kH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "kH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } inputFrameworkOpName: "AvgPool" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "kW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "kW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } inputFrameworkOpName: "AvgPool" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" inputIntName: "pW" inputIntName: "dW" inputIntName: "dH" inputIntName: "extraParam0" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 6 } transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 7 } transformerArgs { name: "extraParam0" argType: INT64 argIndex: 9 } } transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 6 } transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 7 } transformerArgs { name: "extraParam0" argType: INT64 argIndex: 9 } } transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 6 } transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 7 } transformerArgs { name: "extraParam0" argType: INT64 argIndex: 9 } } transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 6 } transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 7 } transformerArgs { name: "extraParam0" argType: INT64 argIndex: 9 } } transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 6 } transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 7 } transformerArgs { name: "extraParam0" argType: INT64 argIndex: 9 } } inputFrameworkOpName: "AvgPool" } } mappings { frameworkName: "tensorflow" opName: "unique_with_counts" inputFrameworkOpName: "UniqueWithCountsV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "UniqueWithCountsV2" } } mappings { frameworkName: "tensorflow" opName: "depthwise_conv2d" inputFrameworkOpName: "DepthwiseConv2dNative" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "filter" outputTensorName: "input" outputTensorName: "weights" inputToOutput { key: "input" value: "input" } inputToOutput { key: "weights" value: "filter" } ruleType: "tensor" inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "stringnotequalsadapterrule" functionName: "stringnotequalsadapterrule" inputStringAttrName: "data_format" outputIntName: "isNCHW" inputFloatName: "data_format" inputToOutput { key: "isNCHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCHW" transformerArgs { name: "data_format" argIndex: 9 stringValue: "NCHW" } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 8 stringValue: "SAME" } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "dH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "dH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "dW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "dW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "ndarraysizeat" functionName: "ndarraysizeat" outputIntName: "kH" inputFloatName: "filter" inputToOutput { key: "kH" value: "filter" } ruleType: "attribute" transformerArgs { key: "kH" transformerArgs { name: "filter" } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "ndarraysizeat" functionName: "ndarraysizeat" outputIntName: "kW" inputFloatName: "filter" inputToOutput { key: "kW" value: "filter" } ruleType: "attribute" transformerArgs { key: "kW" transformerArgs { name: "filter" int64Value: 1 argIndex: 1 } } inputFrameworkOpName: "DepthwiseConv2dNative" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" inputIntName: "pW" inputIntName: "wFormat" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "wFormat" argType: INT64 argIndex: 10 } } transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "wFormat" argType: INT64 argIndex: 10 } } transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } transformerArgs { name: "pW" argType: INT64 argIndex: 5 } transformerArgs { name: "wFormat" argType: INT64 argIndex: 10 } } inputFrameworkOpName: "DepthwiseConv2dNative" } } mappings { frameworkName: "tensorflow" opName: "log_matrix_determinant" inputFrameworkOpName: "LogMatrixDeterminant" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "LogMatrixDeterminant" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "LogMatrixDeterminant" } } mappings { frameworkName: "tensorflow" opName: "realdiv" inputFrameworkOpName: "RealDiv" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "RealDiv" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "RealDiv" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "RealDiv" } } mappings { frameworkName: "tensorflow" opName: "abs" inputFrameworkOpName: "Abs" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Abs" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Abs" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Abs" } } mappings { frameworkName: "tensorflow" opName: "identity" inputFrameworkOpName: "VariableV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" ruleType: "tensor" inputFrameworkOpName: "VariableV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "VariableV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "VariableV2" } } mappings { frameworkName: "tensorflow" opName: "matrix_determinant" inputFrameworkOpName: "BatchMatrixDeterminant" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "BatchMatrixDeterminant" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "MatrixDeterminant" } } mappings { frameworkName: "tensorflow" opName: "maxpool3dnew" inputFrameworkOpName: "MaxPool3D" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "extraParam0" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "extraParam0" argType: INT64 argIndex: 13 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pD" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pD" argType: INT64 argIndex: 6 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 7 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 8 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dD" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dD" int64Value: 1 argType: INT64 argIndex: 9 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 10 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 11 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "isNCDHW" inputToOutput { key: "isNCDHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCDHW" transformerArgs { name: "data_format" argType: STRING argIndex: 14 stringValue: "NDHWC" } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 12 stringValue: "SAME" } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kH" inputToOutput { key: "kH" value: "ksize" } ruleType: "attribute" transformerArgs { key: "kH" transformerArgs { name: "index" int64Value: 3 argType: INT64 argIndex: 2 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kW" inputToOutput { key: "kW" value: "ksize" } ruleType: "attribute" transformerArgs { key: "kW" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 1 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kD" inputToOutput { key: "kD" value: "ksize" } ruleType: "attribute" transformerArgs { key: "kD" transformerArgs { name: "index" int64Value: 1 argType: INT64 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sH" inputToOutput { key: "sH" value: "strides" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "index" int64Value: 3 argType: INT64 argIndex: 5 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sW" inputToOutput { key: "sW" value: "strides" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 4 } } inputFrameworkOpName: "MaxPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sD" inputToOutput { key: "sD" value: "strides" } ruleType: "attribute" transformerArgs { key: "sD" transformerArgs { name: "index" int64Value: 1 argType: INT64 argIndex: 3 } } inputFrameworkOpName: "MaxPool3D" } } mappings { frameworkName: "tensorflow" opName: "tensorarraywritev3" inputFrameworkOpName: "TensorArrayWriteV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "handle" outputTensorName: "input" inputToOutput { key: "input" value: "handle" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayWriteV3" } } mappings { frameworkName: "tensorflow" opName: "softmax_cross_entropy_loss_with_logits" inputFrameworkOpName: "SoftmaxCrossEntropyWithLogits" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "labels" inputTensorName: "features" outputTensorName: "labels" outputTensorName: "logits" inputToOutput { key: "labels" value: "labels" } inputToOutput { key: "logits" value: "features" } ruleType: "tensor" inputFrameworkOpName: "SoftmaxCrossEntropyWithLogits" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "SoftmaxCrossEntropyWithLogits" } } mappings { frameworkName: "tensorflow" opName: "segment_max" inputFrameworkOpName: "SegmentMax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "SegmentMax" } } mappings { frameworkName: "tensorflow" opName: "conv3dnew" inputFrameworkOpName: "Conv3D" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "filter" outputTensorName: "input" outputTensorName: "weights" inputToOutput { key: "input" value: "input" } inputToOutput { key: "weights" value: "filter" } ruleType: "tensor" inputFrameworkOpName: "Conv3D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "isNCDHW" inputToOutput { key: "isNCDHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCDHW" transformerArgs { name: "data_format" argType: STRING argIndex: 13 stringValue: "NDHWC" } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "paddingMode" inputToOutput { key: "paddingMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "paddingMode" transformerArgs { name: "padding" argType: STRING argIndex: 12 stringValue: "SAME" } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "ndarraysizeat" functionName: "ndarraysizeat" outputIntName: "kD" inputFloatName: "filter" inputToOutput { key: "kD" value: "filter" } ruleType: "attribute" transformerArgs { key: "kD" transformerArgs { name: "filter" } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "ndarraysizeat" functionName: "ndarraysizeat" outputIntName: "kH" inputFloatName: "filter" inputToOutput { key: "kH" value: "filter" } ruleType: "attribute" transformerArgs { key: "kH" transformerArgs { name: "filter" int64Value: 1 argIndex: 1 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "ndarraysizeat" functionName: "ndarraysizeat" outputIntName: "kW" inputFloatName: "filter" inputToOutput { key: "kW" value: "filter" } ruleType: "attribute" transformerArgs { key: "kW" transformerArgs { name: "filter" int64Value: 2 argIndex: 2 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sD" inputToOutput { key: "sD" value: "strides" } ruleType: "attribute" transformerArgs { key: "sD" transformerArgs { name: "index" int64Value: 1 argType: INT64 argIndex: 3 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sH" inputToOutput { key: "sH" value: "strides" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 4 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sW" inputToOutput { key: "sW" value: "strides" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "index" int64Value: 3 argType: INT64 argIndex: 5 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 7 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 8 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 6 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "dH" inputToOutput { key: "dH" value: "dilations" } ruleType: "attribute" transformerArgs { key: "dH" transformerArgs { name: "index" int64Value: 3 argType: INT64 argIndex: 11 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "dW" inputToOutput { key: "dW" value: "dilations" } ruleType: "attribute" transformerArgs { key: "dW" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 10 } } inputFrameworkOpName: "Conv3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "dD" inputToOutput { key: "dD" value: "dilations" } ruleType: "attribute" transformerArgs { key: "dD" transformerArgs { name: "index" int64Value: 1 argType: INT64 argIndex: 9 } } inputFrameworkOpName: "Conv3D" } } mappings { frameworkName: "tensorflow" opName: "scatter_sub" inputFrameworkOpName: "ScatterSub" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "updates" inputTensorName: "ref" outputTensorName: "indices" outputTensorName: "updates" outputTensorName: "input" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "input" value: "ref" } ruleType: "tensor" inputFrameworkOpName: "ScatterSub" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "lock" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "lock" argType: BOOL } } inputFrameworkOpName: "ScatterSub" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "checkIndices" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "checkIndices" argType: BOOL argIndex: 1 } } inputFrameworkOpName: "ScatterSub" } } mappings { frameworkName: "tensorflow" opName: "loop_cond" inputFrameworkOpName: "LoopCond" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" ruleType: "tensor" inputFrameworkOpName: "LoopCond" } } mappings { frameworkName: "tensorflow" opName: "reverse" inputFrameworkOpName: "ReverseV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" outputTensorName: "input" inputToOutput { key: "input" value: "tensor" } ruleType: "tensor" inputFrameworkOpName: "ReverseV2" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" inputToOutput { key: "dimensions" value: "axis" } ruleType: "attribute" inputFrameworkOpName: "ReverseV2" } } mappings { frameworkName: "tensorflow" opName: "rank" inputFrameworkOpName: "Rank" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Rank" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Rank" } } mappings { frameworkName: "tensorflow" opName: "erfc" inputFrameworkOpName: "Erfc" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Erfc" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Erfc" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Erfc" } } mappings { frameworkName: "tensorflow" opName: "divide" inputFrameworkOpName: "Div" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Div" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Div" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Div" } } mappings { frameworkName: "tensorflow" opName: "pad" inputFrameworkOpName: "Pad" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "paddings" outputTensorName: "input" outputTensorName: "paddings" inputToOutput { key: "input" value: "input" } inputToOutput { key: "paddings" value: "paddings" } ruleType: "tensor" inputFrameworkOpName: "Pad" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "mode" inputFloatName: "padValue" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "mode" argType: INT64 } transformerArgs { name: "padValue" argType: DOUBLE } } transformerArgs { key: "value" transformerArgs { name: "mode" argType: INT64 } transformerArgs { name: "padValue" argType: DOUBLE } } inputFrameworkOpName: "Pad" } } mappings { frameworkName: "tensorflow" opName: "sparse_softmax_cross_entropy_loss_with_logits" inputFrameworkOpName: "SparseSoftmaxCrossEntropyWithLogits" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "labels" inputTensorName: "features" outputTensorName: "labels" outputTensorName: "logits" inputToOutput { key: "labels" value: "labels" } inputToOutput { key: "logits" value: "features" } ruleType: "tensor" inputFrameworkOpName: "SparseSoftmaxCrossEntropyWithLogits" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "SparseSoftmaxCrossEntropyWithLogits" } indexOverrides { key: 1 value: 0 } indexOverrides { key: 0 value: 1 } } mappings { frameworkName: "tensorflow" opName: "merge" inputFrameworkOpName: "Merge" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "inputs" outputTensorName: "input" inputToOutput { key: "input" value: "inputs" } ruleType: "tensor" inputFrameworkOpName: "Merge" } } mappings { frameworkName: "tensorflow" opName: "resize_nearest_neighbor" inputFrameworkOpName: "ResizeNearestNeighbor" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "size" outputTensorName: "image" outputTensorName: "newImageSize" inputToOutput { key: "image" value: "images" } inputToOutput { key: "newImageSize" value: "size" } ruleType: "tensor" inputFrameworkOpName: "ResizeNearestNeighbor" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "align_corners" inputBooleanName: "half_pixel_centers" outputBooleanName: "alignCorners" outputBooleanName: "halfPixelCenter" inputToOutput { key: "alignCorners" value: "align_corners" } inputToOutput { key: "halfPixelCenter" value: "half_pixel_centers" } ruleType: "attribute" inputFrameworkOpName: "ResizeNearestNeighbor" } } mappings { frameworkName: "tensorflow" opName: "scatter_min" inputFrameworkOpName: "ScatterMin" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "ref" inputTensorName: "indices" inputTensorName: "updates" outputTensorName: "input" outputTensorName: "indices" outputTensorName: "updates" inputToOutput { key: "input" value: "ref" } inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } ruleType: "tensor" inputFrameworkOpName: "ScatterMin" } } mappings { frameworkName: "tensorflow" opName: "check_numerics" inputFrameworkOpName: "CheckNumericsV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" outputTensorName: "input" inputToOutput { key: "input" value: "tensor" } ruleType: "tensor" inputFrameworkOpName: "CheckNumericsV2" } rule { ruleName: "convertinputstringtondarray" functionName: "convertinputstringtondarray" inputStringAttrName: "message" inputToOutput { key: "message" value: "message" } ruleType: "attribute" inputFrameworkOpName: "CheckNumericsV2" } } mappings { frameworkName: "tensorflow" opName: "select" inputFrameworkOpName: "Select" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "condition" inputTensorName: "t" inputTensorName: "e" outputTensorName: "cond" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "cond" value: "condition" } inputToOutput { key: "input" value: "t" } inputToOutput { key: "y" value: "e" } ruleType: "tensor" inputFrameworkOpName: "Select" } } mappings { frameworkName: "tensorflow" opName: "assign" inputFrameworkOpName: "Assign" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "ref" inputTensorName: "value" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "ref" } inputToOutput { key: "y" value: "value" } ruleType: "tensor" inputFrameworkOpName: "Assign" } } mappings { frameworkName: "tensorflow" opName: "size_list" inputFrameworkOpName: "TensorArraySize" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "flow_in" outputTensorName: "list" inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArraySize" } } mappings { frameworkName: "tensorflow" opName: "rint" inputFrameworkOpName: "Rint" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Rint" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Rint" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Rint" } } mappings { frameworkName: "tensorflow" opName: "dilation2d" inputFrameworkOpName: "Dilation2D" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "filter" outputTensorName: "input" outputTensorName: "weights" inputToOutput { key: "input" value: "input" } inputToOutput { key: "weights" value: "filter" } ruleType: "tensor" inputFrameworkOpName: "Dilation2D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputBooleanName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING stringValue: "SAME" } } inputFrameworkOpName: "Dilation2D" } rule { ruleName: "listnumbertolistnumber" functionName: "listnumbertolistnumber" outputIntName: "rates" inputToOutput { key: "rates" value: "rates" } ruleType: "attribute" inputFrameworkOpName: "Dilation2D" } rule { ruleName: "listnumbertolistnumber" functionName: "listnumbertolistnumber" outputIntName: "strides" inputToOutput { key: "strides" value: "strides" } ruleType: "attribute" inputFrameworkOpName: "Dilation2D" } } mappings { frameworkName: "tensorflow" opName: "avgpool3dnew" inputFrameworkOpName: "AvgPool3D" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "extraParam0" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "extraParam0" argType: INT64 argIndex: 13 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pD" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pD" argType: INT64 argIndex: 6 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 7 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 8 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dD" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dD" int64Value: 1 argType: INT64 argIndex: 9 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 10 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 11 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "isNCDHW" inputToOutput { key: "isNCDHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCDHW" transformerArgs { name: "data_format" argType: STRING argIndex: 14 stringValue: "NDHWC" } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 12 stringValue: "SAME" } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kH" inputToOutput { key: "kH" value: "ksize" } ruleType: "attribute" transformerArgs { key: "kH" transformerArgs { name: "index" int64Value: 3 argType: INT64 argIndex: 2 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kW" inputToOutput { key: "kW" value: "ksize" } ruleType: "attribute" transformerArgs { key: "kW" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 1 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kD" inputToOutput { key: "kD" value: "ksize" } ruleType: "attribute" transformerArgs { key: "kD" transformerArgs { name: "index" int64Value: 1 argType: INT64 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sH" inputToOutput { key: "sH" value: "strides" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "index" int64Value: 3 argType: INT64 argIndex: 5 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sW" inputToOutput { key: "sW" value: "strides" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 4 } } inputFrameworkOpName: "AvgPool3D" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "sD" inputToOutput { key: "sD" value: "strides" } ruleType: "attribute" transformerArgs { key: "sD" transformerArgs { name: "index" int64Value: 1 argType: INT64 argIndex: 3 } } inputFrameworkOpName: "AvgPool3D" } } mappings { frameworkName: "tensorflow" opName: "add" inputFrameworkOpName: "Add" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Add" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Add" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Add" } } mappings { frameworkName: "tensorflow" opName: "isfinite" inputFrameworkOpName: "IsFinite" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "IsFinite" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "IsFinite" } } mappings { frameworkName: "tensorflow" opName: "matrix_inverse" inputFrameworkOpName: "BatchMatrixInverse" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "BatchMatrixInverse" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" boolValue: true argType: BOOL } } inputFrameworkOpName: "BatchMatrixInverse" } } mappings { frameworkName: "tensorflow" opName: "rshift_bits" inputFrameworkOpName: "RightShift" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "RightShift" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "RightShift" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "RightShift" } } mappings { frameworkName: "tensorflow" opName: "elu" inputFrameworkOpName: "Elu" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "features" outputTensorName: "input" inputToOutput { key: "input" value: "features" } ruleType: "tensor" inputFrameworkOpName: "Elu" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "alpha" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "alpha" doubleValue: 1.0 argType: DOUBLE } } inputFrameworkOpName: "Elu" } } mappings { frameworkName: "tensorflow" opName: "matrix_diag" inputFrameworkOpName: "MatrixDiag" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "diagonal" outputTensorName: "diagonal" inputToOutput { key: "diagonal" value: "diagonal" } ruleType: "tensor" inputFrameworkOpName: "MatrixDiag" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "MatrixDiag" } } mappings { frameworkName: "tensorflow" opName: "draw_bounding_boxes" inputFrameworkOpName: "DrawBoundingBoxesV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "boxes" inputTensorName: "colors" outputTensorName: "images" outputTensorName: "boxes" outputTensorName: "colors" inputToOutput { key: "images" value: "images" } inputToOutput { key: "boxes" value: "boxes" } inputToOutput { key: "colors" value: "colors" } ruleType: "tensor" inputFrameworkOpName: "DrawBoundingBoxesV2" } } mappings { frameworkName: "tensorflow" opName: "igamma" inputFrameworkOpName: "Igamma" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "a" inputTensorName: "x" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "a" } inputToOutput { key: "y" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Igamma" } } mappings { frameworkName: "tensorflow" opName: "matmul" inputFrameworkOpName: "MatMul" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "a" inputTensorName: "b" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "a" } inputToOutput { key: "y" value: "b" } ruleType: "tensor" inputFrameworkOpName: "MatMul" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "alpha" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "alpha" doubleValue: 1.0 argType: DOUBLE } } inputFrameworkOpName: "MatMul" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "beta" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "beta" argType: DOUBLE argIndex: 1 } } inputFrameworkOpName: "MatMul" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "transX" outputIntName: "transY" inputBooleanName: "transpose_a" inputBooleanName: "transpose_b" inputToOutput { key: "transX" value: "transpose_a" } inputToOutput { key: "transY" value: "transpose_b" } ruleType: "attribute" inputFrameworkOpName: "MatMul" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "transZ" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "transZ" argType: INT64 argIndex: 2 } } inputFrameworkOpName: "MatMul" } } mappings { frameworkName: "tensorflow" opName: "sinh" inputFrameworkOpName: "Sinh" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Sinh" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Sinh" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Sinh" } } mappings { frameworkName: "tensorflow" opName: "softplus" inputFrameworkOpName: "Softplus" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "features" outputTensorName: "input" inputToOutput { key: "input" value: "features" } ruleType: "tensor" inputFrameworkOpName: "Softplus" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Softplus" } } mappings { frameworkName: "tensorflow" opName: "identity" inputFrameworkOpName: "Const" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" ruleType: "tensor" inputFrameworkOpName: "Const" } rule { ruleName: "ndarrayinputtondarray" functionName: "ndarrayinputtondarray" inputTensorName: "value" inputToOutput { key: "input" value: "value" } ruleType: "attribute" inputFrameworkOpName: "Const" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Const" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "Const" } } mappings { frameworkName: "tensorflow" opName: "cumsum" inputFrameworkOpName: "Cumsum" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "axis" outputTensorName: "input" outputTensorName: "dimensions" inputToOutput { key: "input" value: "x" } inputToOutput { key: "dimensions" value: "axis" } ruleType: "tensor" inputFrameworkOpName: "Cumsum" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" inputBooleanName: "exclusive" inputBooleanName: "reverse" outputBooleanName: "exclusive" outputBooleanName: "reverse" inputToOutput { key: "exclusive" value: "exclusive" } inputToOutput { key: "reverse" value: "reverse" } ruleType: "attribute" inputFrameworkOpName: "Cumsum" } } mappings { frameworkName: "tensorflow" opName: "zeroslike" inputFrameworkOpName: "ZerosLike" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "ZerosLike" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "ZerosLike" } rule { ruleName: "valuemapping" functionName: "valuemapping" outputIntName: "dataType" inputDataTypeName: "T" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "ZerosLike" } } mappings { frameworkName: "tensorflow" opName: "gather" inputFrameworkOpName: "Gather" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "params" inputTensorName: "indices" outputTensorName: "input" outputTensorName: "indices" inputToOutput { key: "input" value: "params" } inputToOutput { key: "indices" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "Gather" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" ruleType: "attribute" inputFrameworkOpName: "Gather" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Gather" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dimensions" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dimensions" argType: INT64 } } inputFrameworkOpName: "Gather" } } mappings { frameworkName: "tensorflow" opName: "stack_list" inputFrameworkOpName: "TensorArrayConcat" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "flow_in" outputTensorName: "list" inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayConcat" } } mappings { frameworkName: "tensorflow" opName: "scatter_nd_add" inputFrameworkOpName: "ScatterNdAdd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "updates" inputTensorName: "ref" outputTensorName: "indices" outputTensorName: "updates" outputTensorName: "input" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "input" value: "ref" } ruleType: "tensor" inputFrameworkOpName: "ScatterNdAdd" } } mappings { frameworkName: "tensorflow" opName: "bitcast" inputFrameworkOpName: "Bitcast" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Bitcast" } rule { ruleName: "datatypetoint" functionName: "datatypetoint" outputIntName: "newType" inputDataTypeName: "type" inputToOutput { key: "newType" value: "type" } ruleType: "attribute" inputFrameworkOpName: "Bitcast" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "type" inputToOutput { key: "dataType" value: "type" } ruleType: "attribute" inputFrameworkOpName: "Bitcast" } } mappings { frameworkName: "tensorflow" opName: "bitwise_or" inputFrameworkOpName: "BitwiseOr" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "BitwiseOr" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "BitwiseOr" } } mappings { frameworkName: "tensorflow" opName: "gruCell" inputFrameworkOpName: "GRUBlockCell" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "h_prev" inputTensorName: "w_ru" inputTensorName: "w_c" inputTensorName: "b_ru" inputTensorName: "b_c" outputTensorName: "input" outputTensorName: "hLast" outputTensorName: "Wru" outputTensorName: "Wc" outputTensorName: "bru" outputTensorName: "bc" inputToOutput { key: "input" value: "x" } inputToOutput { key: "hLast" value: "h_prev" } inputToOutput { key: "Wru" value: "w_ru" } inputToOutput { key: "Wc" value: "w_c" } inputToOutput { key: "bru" value: "b_ru" } inputToOutput { key: "bc" value: "b_c" } ruleType: "tensor" inputFrameworkOpName: "GRUBlockCell" } } mappings { frameworkName: "tensorflow" opName: "randomuniform" inputFrameworkOpName: "RandomUniform" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" outputTensorName: "shape" inputToOutput { key: "shape" value: "shape" } ruleType: "tensor" inputFrameworkOpName: "RandomUniform" } rule { ruleName: "datatypetoint" functionName: "datatypetoint" outputIntName: "dtype" inputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "RandomUniform" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "RandomUniform" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "min" inputFloatName: "max" inputTensorName: "min" inputTensorName: "max" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } transformerArgs { key: "value" transformerArgs { name: "min" argType: DOUBLE } transformerArgs { name: "max" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } transformerArgs { name: "min" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 1 } transformerArgs { name: "max" inputValue { data_type: 11 double_data: 1.0 } argType: INPUT_TENSOR argIndex: 2 } } inputFrameworkOpName: "RandomUniform" } } mappings { frameworkName: "tensorflow" opName: "bitwise_and" inputFrameworkOpName: "BitwiseAnd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "BitwiseAnd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "BitwiseAnd" } } mappings { frameworkName: "tensorflow" opName: "enter" inputFrameworkOpName: "Enter" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" outputTensorName: "input" inputToOutput { key: "input" value: "data" } ruleType: "tensor" inputFrameworkOpName: "Enter" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputStringAttrName: "frame_name" outputStringAttrName: "frameName" inputBooleanName: "is_constant" outputBooleanName: "isConstant" inputToOutput { key: "isConstant" value: "is_constant" } inputToOutput { key: "frameName" value: "frame_name" } ruleType: "attribute" inputFrameworkOpName: "Enter" } } mappings { frameworkName: "tensorflow" opName: "sin" inputFrameworkOpName: "Sin" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Sin" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Sin" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Sin" } } mappings { frameworkName: "tensorflow" opName: "unique" inputFrameworkOpName: "Unique" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Unique" } } mappings { frameworkName: "tensorflow" opName: "roll" inputFrameworkOpName: "Roll" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "axis" inputTensorName: "shift" outputTensorName: "input" outputTensorName: "dimensions" outputTensorName: "shiftsI" inputToOutput { key: "input" value: "input" } inputToOutput { key: "dimensions" value: "axis" } inputToOutput { key: "shiftsI" value: "shift" } ruleType: "tensor" inputFrameworkOpName: "Roll" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "shift" inputToOutput { key: "shift" value: "shift" } ruleType: "attribute" inputFrameworkOpName: "Roll" } } mappings { frameworkName: "tensorflow" opName: "in_top_k" inputFrameworkOpName: "InTopK" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "targets" inputTensorName: "predictions" outputTensorName: "target" outputTensorName: "predictions" inputToOutput { key: "target" value: "targets" } inputToOutput { key: "predictions" value: "predictions" } ruleType: "tensor" inputFrameworkOpName: "InTopK" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "k" outputIntName: "k" inputToOutput { key: "k" value: "k" } ruleType: "attribute" inputFrameworkOpName: "InTopK" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "sorted" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "sorted" boolValue: true argType: BOOL } } inputFrameworkOpName: "InTopK" } } mappings { frameworkName: "tensorflow" opName: "reverse_sequence" inputFrameworkOpName: "ReverseSequence" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "seq_lengths" outputTensorName: "input" outputTensorName: "seqLengths" inputToOutput { key: "input" value: "input" } inputToOutput { key: "seqLengths" value: "seq_lengths" } ruleType: "tensor" inputFrameworkOpName: "ReverseSequence" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "batch_dim" inputIntName: "seq_dim" outputIntName: "batchDim" outputIntName: "seqDim" inputToOutput { key: "batchDim" value: "batch_dim" } inputToOutput { key: "seqDim" value: "seq_dim" } ruleType: "attribute" inputFrameworkOpName: "ReverseSequence" } } mappings { frameworkName: "tensorflow" opName: "unsorted_segment_min" inputFrameworkOpName: "UnsortedSegmentMin" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "UnsortedSegmentMin" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "numSegments" inputToOutput { key: "numSegments" value: "num_segments" } ruleType: "attribute" inputFrameworkOpName: "UnsortedSegmentMin" } } mappings { frameworkName: "tensorflow" opName: "rsqrt" inputFrameworkOpName: "Rsqrt" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Rsqrt" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Rsqrt" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Rsqrt" } } mappings { frameworkName: "tensorflow" opName: "split_list" inputFrameworkOpName: "TensorArraySplit" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "lengths" inputTensorName: "value" inputTensorName: "value" outputTensorName: "sizes" outputTensorName: "list" outputTensorName: "array" inputToOutput { key: "sizes" value: "lengths" } inputToOutput { key: "list" value: "value" } inputToOutput { key: "array" value: "value" } ruleType: "tensor" inputFrameworkOpName: "TensorArraySplit" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "TensorArraySplit" } } mappings { frameworkName: "tensorflow" opName: "scatter_nd_update" inputFrameworkOpName: "ScatterNdUpdate" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "updates" inputTensorName: "ref" outputTensorName: "indices" outputTensorName: "updates" outputTensorName: "input" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "input" value: "ref" } ruleType: "tensor" inputFrameworkOpName: "ScatterNdUpdate" } } mappings { frameworkName: "tensorflow" opName: "rgb_to_hsv" inputFrameworkOpName: "RGBToHSV" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" outputTensorName: "input" inputToOutput { key: "input" value: "images" } ruleType: "tensor" inputFrameworkOpName: "RGBToHSV" } } mappings { frameworkName: "tensorflow" opName: "create" inputFrameworkOpName: "Empty" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" outputTensorName: "input" inputToOutput { key: "input" value: "shape" } ruleType: "tensor" inputFrameworkOpName: "Empty" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "init" outputBooleanName: "init" inputDataTypeName: "dtype" outputDataTypeName: "outputType" inputToOutput { key: "init" value: "init" } inputToOutput { key: "outputType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "Empty" } rule { ruleName: "datatypetoint" functionName: "datatypetoint" inputDataTypeName: "dtype" outputDataTypeName: "outputType" inputToOutput { key: "outputType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "Empty" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "order" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "order" int64Value: 99 argType: INT64 } } inputFrameworkOpName: "Empty" } } mappings { frameworkName: "tensorflow" opName: "zeta" inputFrameworkOpName: "Zeta" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "q" outputTensorName: "input" outputTensorName: "q" inputToOutput { key: "input" value: "x" } inputToOutput { key: "q" value: "q" } ruleType: "tensor" inputFrameworkOpName: "Zeta" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Zeta" } } mappings { frameworkName: "tensorflow" opName: "lin_space" inputFrameworkOpName: "LinSpace" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "start" inputTensorName: "stop" inputTensorName: "num" outputTensorName: "start" outputTensorName: "finish" outputTensorName: "numOfElements" inputToOutput { key: "start" value: "start" } inputToOutput { key: "finish" value: "stop" } inputToOutput { key: "numOfElements" value: "num" } ruleType: "tensor" inputFrameworkOpName: "LinSpace" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputDoubleName: "stop" inputToOutput { key: "start" value: "start" } inputToOutput { key: "stop" value: "stop" } ruleType: "attribute" inputFrameworkOpName: "LinSpace" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "LinSpace" } } mappings { frameworkName: "tensorflow" opName: "boolean_and" inputFrameworkOpName: "LogicalAnd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "LogicalAnd" } } mappings { frameworkName: "tensorflow" opName: "random_gamma" inputFrameworkOpName: "RandomGamma" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" inputTensorName: "alpha" outputTensorName: "shape" outputTensorName: "alpha" inputToOutput { key: "shape" value: "shape" } inputToOutput { key: "alpha" value: "alpha" } ruleType: "tensor" inputFrameworkOpName: "RandomGamma" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "seed" outputIntName: "seed" inputToOutput { key: "seed" value: "seed" } ruleType: "attribute" inputFrameworkOpName: "RandomGamma" } } mappings { frameworkName: "tensorflow" opName: "pad" inputFrameworkOpName: "PadV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "paddings" outputTensorName: "input" outputTensorName: "paddings" inputToOutput { key: "input" value: "input" } inputToOutput { key: "paddings" value: "paddings" } ruleType: "tensor" inputFrameworkOpName: "PadV2" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputDoubleName: "padValue" inputToOutput { key: "padValue" value: "constant_values" } ruleType: "attribute" inputFrameworkOpName: "PadV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "mode" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "mode" argType: INT64 } } inputFrameworkOpName: "PadV2" } } mappings { frameworkName: "tensorflow" opName: "unsorted_segment_sum" inputFrameworkOpName: "UnsortedSegmentSum" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "UnsortedSegmentSum" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "numSegments" inputToOutput { key: "numSegments" value: "num_segments" } ruleType: "attribute" inputFrameworkOpName: "UnsortedSegmentSum" } } mappings { frameworkName: "tensorflow" opName: "log1p" inputFrameworkOpName: "Log1p" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Log1p" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Log1p" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Log1p" } } mappings { frameworkName: "tensorflow" opName: "matrix_set_diag" inputFrameworkOpName: "MatrixSetDiag" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "diagonal" outputTensorName: "input" outputTensorName: "diagonal" inputToOutput { key: "input" value: "input" } inputToOutput { key: "diagonal" value: "diagonal" } ruleType: "tensor" inputFrameworkOpName: "MatrixSetDiag" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "BatchMatrixSetDiag" } } mappings { frameworkName: "tensorflow" opName: "dynamic_partition" inputFrameworkOpName: "DynamicPartition" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "partitions" outputTensorName: "input" outputTensorName: "indices" inputToOutput { key: "input" value: "data" } inputToOutput { key: "indices" value: "partitions" } ruleType: "tensor" inputFrameworkOpName: "DynamicPartition" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "num_partitions" outputIntName: "numPartitions" inputToOutput { key: "numPartitions" value: "num_partitions" } ruleType: "attribute" inputFrameworkOpName: "DynamicPartition" } } mappings { frameworkName: "tensorflow" opName: "mod" inputFrameworkOpName: "Mod" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Mod" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Mod" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Mod" } } mappings { frameworkName: "tensorflow" opName: "scatter_mul" inputFrameworkOpName: "ScatterMul" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "updates" inputTensorName: "ref" outputTensorName: "indices" outputTensorName: "updates" outputTensorName: "input" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "input" value: "ref" } ruleType: "tensor" inputFrameworkOpName: "ScatterMul" } } mappings { frameworkName: "tensorflow" opName: "broadcast_to" inputFrameworkOpName: "BroadcastTo" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "shape" outputTensorName: "input" outputTensorName: "shape" inputToOutput { key: "input" value: "input" } inputToOutput { key: "shape" value: "shape" } ruleType: "tensor" inputFrameworkOpName: "BroadcastTo" } } mappings { frameworkName: "tensorflow" opName: "random_poisson" inputFrameworkOpName: "RandomPoissonV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" inputTensorName: "rate" outputTensorName: "shape" outputTensorName: "lambda" inputToOutput { key: "shape" value: "shape" } inputToOutput { key: "lambda" value: "rate" } ruleType: "tensor" inputFrameworkOpName: "RandomPoissonV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "seed" outputIntName: "seed" inputDataTypeName: "dtype" outputDataTypeName: "dtype" inputToOutput { key: "seed" value: "seed" } inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "RandomPoissonV2" } } mappings { frameworkName: "tensorflow" opName: "asin" inputFrameworkOpName: "Asin" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Asin" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Asin" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Asin" } } mappings { frameworkName: "tensorflow" opName: "space_to_depth" inputFrameworkOpName: "SpaceToDepth" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "SpaceToDepth" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "block_size" outputIntName: "block_size" inputToOutput { key: "block_size" value: "block_size" } ruleType: "attribute" inputFrameworkOpName: "SpaceToDepth" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "isNHWC" inputToOutput { key: "isNHWC" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNHWC" transformerArgs { name: "data_format" argType: STRING argIndex: 1 stringValue: "NHWC" } } inputFrameworkOpName: "SpaceToDepth" } } mappings { frameworkName: "tensorflow" opName: "tile" inputFrameworkOpName: "Tile" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "multiples" outputTensorName: "input" outputTensorName: "reps_vector" inputToOutput { key: "input" value: "input" } inputToOutput { key: "reps_vector" value: "multiples" } ruleType: "tensor" inputFrameworkOpName: "Tile" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dimensions" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dimensions" argType: INT64 } } inputFrameworkOpName: "Tile" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "is_static_reps" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "is_static_reps" boolValue: true argType: BOOL } } inputFrameworkOpName: "Tile" } } mappings { frameworkName: "tensorflow" opName: "depth_to_space" inputFrameworkOpName: "DepthToSpace" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "DepthToSpace" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "block_size" outputIntName: "block_size" inputToOutput { key: "block_size" value: "block_size" } ruleType: "attribute" inputFrameworkOpName: "DepthToSpace" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "isNHWC" inputToOutput { key: "isNHWC" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNHWC" transformerArgs { name: "data_format" argType: STRING argIndex: 1 stringValue: "NHWC" } } inputFrameworkOpName: "DepthToSpace" } } mappings { frameworkName: "tensorflow" opName: "invert_permutation" inputFrameworkOpName: "InvertPermutation" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "InvertPermutation" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "InvertPermutation" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "InvertPermutation" } } mappings { frameworkName: "tensorflow" opName: "crop_and_resize" inputFrameworkOpName: "CropAndResize" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "image" inputTensorName: "boxes" inputTensorName: "box_ind" inputTensorName: "crop_size" outputTensorName: "image" outputTensorName: "boxes" outputTensorName: "boxIndexes" outputTensorName: "newImageSize" inputToOutput { key: "image" value: "image" } inputToOutput { key: "boxes" value: "boxes" } inputToOutput { key: "boxIndexes" value: "box_ind" } inputToOutput { key: "newImageSize" value: "crop_size" } ruleType: "tensor" inputFrameworkOpName: "CropAndResize" } rule { ruleName: "stringtoindex" functionName: "stringtoindex" inputStringAttrName: "method" outputIntName: "method" inputFloatName: "bilinear" inputFloatName: "nearest" inputToOutput { key: "method" value: "method" } ruleType: "attribute" transformerArgs { key: "method" transformerArgs { name: "bilinear" stringValue: "bilinear" } transformerArgs { name: "nearest" stringValue: "nearest" } } transformerArgs { key: "method" transformerArgs { name: "bilinear" stringValue: "bilinear" } transformerArgs { name: "nearest" stringValue: "nearest" } } inputFrameworkOpName: "CropAndResize" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "extrapolation_value" outputDoubleName: "extrapolationVal" inputToOutput { key: "extrapolationVal" value: "extrapolation_value" } ruleType: "attribute" inputFrameworkOpName: "CropAndResize" } } mappings { frameworkName: "tensorflow" opName: "read_list" inputFrameworkOpName: "TensorArrayRead" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "handle" outputTensorName: "list" inputToOutput { key: "list" value: "handle" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayRead" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "importDataType" inputToOutput { key: "importDataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayRead" } } mappings { frameworkName: "tensorflow" opName: "scatter_nd" inputFrameworkOpName: "ScatterNd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "updates" inputTensorName: "shape" outputTensorName: "indices" outputTensorName: "updates" outputTensorName: "shape" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "shape" value: "shape" } ruleType: "tensor" inputFrameworkOpName: "ScatterNd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "lock" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "lock" argType: BOOL } } inputFrameworkOpName: "ScatterNd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "checkIndices" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "checkIndices" argType: BOOL argIndex: 1 } } inputFrameworkOpName: "ScatterNd" } } mappings { frameworkName: "tensorflow" opName: "strided_slice" inputFrameworkOpName: "StridedSlice" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "begin" inputTensorName: "end" inputTensorName: "strides" outputTensorName: "input" outputTensorName: "v_begin" outputTensorName: "v_end" outputTensorName: "v_stride" inputToOutput { key: "input" value: "input" } inputToOutput { key: "v_begin" value: "begin" } inputToOutput { key: "v_end" value: "end" } inputToOutput { key: "v_stride" value: "strides" } ruleType: "tensor" inputFrameworkOpName: "StridedSlice" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "begin_mask" inputIntName: "end_mask" inputIntName: "ellipsis_mask" inputIntName: "new_axis_mask" inputIntName: "shrink_axis_mask" outputIntName: "begin_mask" outputIntName: "end_mask" outputIntName: "ellipsis_mask" outputIntName: "new_axis_mask" outputIntName: "shrink_axis_mask" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "begin_mask" value: "begin_mask" } inputToOutput { key: "end_mask" value: "end_mask" } inputToOutput { key: "ellipsis_mask" value: "ellipsis_mask" } inputToOutput { key: "new_axis_mask" value: "new_axis_mask" } inputToOutput { key: "shrink_axis_mask" value: "shrink_axis_mask" } inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "StridedSlice" } } mappings { frameworkName: "tensorflow" opName: "scatter_list" inputFrameworkOpName: "TensorArrayScatter" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" inputTensorName: "indices" inputTensorName: "flow_in" outputTensorName: "array" outputTensorName: "sizes" outputTensorName: "list" inputToOutput { key: "array" value: "value" } inputToOutput { key: "sizes" value: "indices" } inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayScatter" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayScatter" } } mappings { frameworkName: "tensorflow" opName: "size_list" inputFrameworkOpName: "TensorArraySizeV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "flow_in" outputTensorName: "list" inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArraySizeV2" } } mappings { frameworkName: "tensorflow" opName: "size_list" inputFrameworkOpName: "TensorArraySizeV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "flow_in" outputTensorName: "list" inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArraySizeV3" } } mappings { frameworkName: "tensorflow" opName: "next_iteration" inputFrameworkOpName: "NextIteration" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" outputTensorName: "input" inputToOutput { key: "input" value: "data" } ruleType: "tensor" inputFrameworkOpName: "NextIteration" } } mappings { frameworkName: "tensorflow" opName: "solve" inputFrameworkOpName: "MatrixSolve" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "matrix" inputTensorName: "rhs" outputTensorName: "a" outputTensorName: "b" inputToOutput { key: "a" value: "matrix" } inputToOutput { key: "b" value: "rhs" } ruleType: "tensor" inputFrameworkOpName: "MatrixSolve" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "adjoint" outputBooleanName: "useAdjoint" inputToOutput { key: "useAdjoint" value: "adjoint" } ruleType: "attribute" inputFrameworkOpName: "MatrixSolve" } } mappings { frameworkName: "tensorflow" opName: "fused_batch_norm" inputFrameworkOpName: "FusedBatchNorm" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "scale" inputTensorName: "offset" inputTensorName: "mean" inputTensorName: "variance" outputTensorName: "input" outputTensorName: "scale" outputTensorName: "offset" outputTensorName: "mean" outputTensorName: "variance" inputToOutput { key: "input" value: "x" } inputToOutput { key: "scale" value: "scale" } inputToOutput { key: "offset" value: "offset" } inputToOutput { key: "mean" value: "mean" } inputToOutput { key: "variance" value: "variance" } ruleType: "tensor" inputFrameworkOpName: "FusedBatchNorm" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "epsilon" outputDoubleName: "epsilon" inputToOutput { key: "epsilon" value: "epsilon" } ruleType: "attribute" inputFrameworkOpName: "FusedBatchNorm" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "isTraining" inputBooleanName: "is_training" inputToOutput { key: "isTraining" value: "is_training" } ruleType: "attribute" inputFrameworkOpName: "FusedBatchNorm" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "dataFormat" inputToOutput { key: "dataFormat" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dataFormat" transformerArgs { name: "data_format" argType: STRING stringValue: "NCHW" } } inputFrameworkOpName: "FusedBatchNorm" } } mappings { frameworkName: "tensorflow" opName: "scatter_max" inputFrameworkOpName: "TensorScatterMax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" inputTensorName: "indices" inputTensorName: "updates" outputTensorName: "input" outputTensorName: "indices" outputTensorName: "updates" inputToOutput { key: "input" value: "tensor" } inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } ruleType: "tensor" inputFrameworkOpName: "TensorScatterMax" } } mappings { frameworkName: "tensorflow" opName: "greater_equal" inputFrameworkOpName: "GreaterEqual" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "GreaterEqual" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "GreaterEqual" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "GreaterEqual" } } mappings { frameworkName: "tensorflow" opName: "scatter_nd_sub" inputFrameworkOpName: "ScatterNdSub" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "updates" inputTensorName: "ref" outputTensorName: "indices" outputTensorName: "updates" outputTensorName: "input" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "input" value: "ref" } ruleType: "tensor" inputFrameworkOpName: "ScatterNdSub" } } mappings { frameworkName: "tensorflow" opName: "equals" inputFrameworkOpName: "Equal" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Equal" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Equal" } } mappings { frameworkName: "tensorflow" opName: "read_list" inputFrameworkOpName: "TensorArrayReadV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "handle" outputTensorName: "list" inputToOutput { key: "list" value: "handle" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayReadV3" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "importDataType" inputToOutput { key: "importDataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayReadV3" } } mappings { frameworkName: "tensorflow" opName: "floormod" inputFrameworkOpName: "FloorMod" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "FloorMod" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "FloorMod" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "FloorMod" } } mappings { frameworkName: "tensorflow" opName: "read_list" inputFrameworkOpName: "TensorArrayReadV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "handle" outputTensorName: "list" inputToOutput { key: "list" value: "handle" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayReadV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "importDataType" inputToOutput { key: "importDataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayReadV2" } } mappings { frameworkName: "tensorflow" opName: "biasadd" inputFrameworkOpName: "BiasAdd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" inputTensorName: "bias" outputTensorName: "input" outputTensorName: "bias" inputToOutput { key: "input" value: "value" } inputToOutput { key: "bias" value: "bias" } ruleType: "tensor" inputFrameworkOpName: "BiasAdd" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputBooleanName: "nchw" inputToOutput { key: "nchw" value: "data_format" } ruleType: "attribute" transformerArgs { key: "nchw" transformerArgs { name: "data_format" argType: STRING stringValue: "NCHW" } } inputFrameworkOpName: "BiasAdd" } } mappings { frameworkName: "tensorflow" opName: "identity" inputFrameworkOpName: "Identity" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Identity" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Identity" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Identity" } } mappings { frameworkName: "tensorflow" opName: "unstack" inputFrameworkOpName: "Unpack" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" outputTensorName: "input" inputToOutput { key: "input" value: "value" } ruleType: "tensor" inputFrameworkOpName: "Unpack" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "axis" inputIntName: "num" outputIntName: "dimensions" outputIntName: "num" inputToOutput { key: "dimensions" value: "axis" } inputToOutput { key: "num" value: "num" } ruleType: "attribute" inputFrameworkOpName: "Unpack" } } mappings { frameworkName: "tensorflow" opName: "exit" inputFrameworkOpName: "Exit" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" outputTensorName: "input" inputToOutput { key: "input" value: "data" } ruleType: "tensor" inputFrameworkOpName: "Exit" } } mappings { frameworkName: "tensorflow" opName: "add" inputFrameworkOpName: "AddV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "AddV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "AddV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "AddV2" } } mappings { frameworkName: "tensorflow" opName: "tanh" inputFrameworkOpName: "Tanh" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Tanh" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Tanh" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Tanh" } } mappings { frameworkName: "tensorflow" opName: "toggle_bits" inputFrameworkOpName: "Invert" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Invert" } } mappings { frameworkName: "tensorflow" opName: "lstmBlockCell" inputFrameworkOpName: "LSTMBlockCell" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "cs_prev" inputTensorName: "h_prev" inputTensorName: "w" inputTensorName: "wci" inputTensorName: "wcf" inputTensorName: "wco" inputTensorName: "b" outputTensorName: "xt" outputTensorName: "cLast" outputTensorName: "yLast" outputTensorName: "W" outputTensorName: "Wci" outputTensorName: "Wcf" outputTensorName: "Wco" outputTensorName: "b" inputToOutput { key: "xt" value: "x" } inputToOutput { key: "cLast" value: "cs_prev" } inputToOutput { key: "yLast" value: "h_prev" } inputToOutput { key: "W" value: "w" } inputToOutput { key: "Wci" value: "wci" } inputToOutput { key: "Wcf" value: "wcf" } inputToOutput { key: "Wco" value: "wco" } inputToOutput { key: "b" value: "b" } ruleType: "tensor" inputFrameworkOpName: "LSTMBlockCell" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "forget_bias" inputFloatName: "cell_clip" outputDoubleName: "forgetBias" outputDoubleName: "clippingCellValue" inputToOutput { key: "forgetBias" value: "forget_bias" } inputToOutput { key: "clippingCellValue" value: "cell_clip" } ruleType: "attribute" inputFrameworkOpName: "LSTMBlockCell" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "peephole" inputBooleanName: "use_peephole" inputToOutput { key: "peephole" value: "use_peephole" } ruleType: "attribute" inputFrameworkOpName: "LSTMBlockCell" } } mappings { frameworkName: "tensorflow" opName: "log" inputFrameworkOpName: "Log" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Log" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Log" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Log" } } mappings { frameworkName: "tensorflow" opName: "non_max_suppression_v3" inputFrameworkOpName: "NonMaxSuppressionV4" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "boxes" inputTensorName: "scores" inputTensorName: "max_output_size" inputTensorName: "iou_threshold" inputTensorName: "score_threshold" outputTensorName: "boxes" outputTensorName: "scales" outputTensorName: "maxOutSize" outputTensorName: "iouThreshold" outputTensorName: "scoreThreshold" inputToOutput { key: "boxes" value: "boxes" } inputToOutput { key: "scales" value: "scores" } inputToOutput { key: "maxOutSize" value: "max_output_size" } inputToOutput { key: "iouThreshold" value: "iou_threshold" } inputToOutput { key: "scoreThreshold" value: "score_threshold" } ruleType: "tensor" inputFrameworkOpName: "NonMaxSuppressionV4" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "maxOutputSize" inputToOutput { key: "maxOutputSize" value: "max_output_size" } ruleType: "attribute" inputFrameworkOpName: "NonMaxSuppressionV4" } } mappings { frameworkName: "tensorflow" opName: "less_equal" inputFrameworkOpName: "LessEqual" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "LessEqual" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "LessEqual" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "LessEqual" } } mappings { frameworkName: "tensorflow" opName: "non_max_suppression" inputFrameworkOpName: "NonMaxSuppressionV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "boxes" inputTensorName: "scores" inputTensorName: "iou_threshold" inputTensorName: "max_output_size" outputTensorName: "boxes" outputTensorName: "scales" outputTensorName: "iouThreshold" outputTensorName: "maxOutputSize" inputToOutput { key: "boxes" value: "boxes" } inputToOutput { key: "scales" value: "scores" } inputToOutput { key: "iouThreshold" value: "iou_threshold" } inputToOutput { key: "maxOutputSize" value: "max_output_size" } ruleType: "tensor" inputFrameworkOpName: "NonMaxSuppressionV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "scoreThreshold" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "scoreThreshold" doubleValue: 0.5 argType: DOUBLE argIndex: 1 } } inputFrameworkOpName: "NonMaxSuppressionV2" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" inputToOutput { key: "maxOutputSize" value: "max_output_size" } ruleType: "attribute" inputFrameworkOpName: "NonMaxSuppressionV2" } } mappings { frameworkName: "tensorflow" opName: "non_max_suppression_v3" inputFrameworkOpName: "NonMaxSuppressionV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "boxes" inputTensorName: "scores" inputTensorName: "max_output_size" inputTensorName: "iou_threshold" inputTensorName: "score_threshold" outputTensorName: "boxes" outputTensorName: "scales" outputTensorName: "maxOutSize" outputTensorName: "iouThreshold" outputTensorName: "scoreThreshold" inputToOutput { key: "boxes" value: "boxes" } inputToOutput { key: "scales" value: "scores" } inputToOutput { key: "maxOutSize" value: "max_output_size" } inputToOutput { key: "iouThreshold" value: "iou_threshold" } inputToOutput { key: "scoreThreshold" value: "score_threshold" } ruleType: "tensor" inputFrameworkOpName: "NonMaxSuppressionV3" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "maxOutputSize" inputToOutput { key: "maxOutputSize" value: "max_output_size" } ruleType: "attribute" inputFrameworkOpName: "NonMaxSuppressionV3" } } mappings { frameworkName: "tensorflow" opName: "onehot" inputFrameworkOpName: "OneHot" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" outputTensorName: "input" inputToOutput { key: "input" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "OneHot" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" inputToOutput { key: "on" value: "on_value" } inputToOutput { key: "off" value: "off_value" } inputToOutput { key: "depth" value: "depth" } ruleType: "attribute" inputFrameworkOpName: "OneHot" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "axis" outputIntName: "dimensions" outputIntName: "dataType" inputDataTypeName: "T" inputToOutput { key: "dimensions" value: "axis" } inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "OneHot" } } mappings { frameworkName: "tensorflow" opName: "transpose" inputFrameworkOpName: "Transpose" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "perm" outputTensorName: "input" outputTensorName: "permutationVector" inputToOutput { key: "input" value: "x" } inputToOutput { key: "permutationVector" value: "perm" } ruleType: "tensor" inputFrameworkOpName: "Transpose" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Transpose" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "permuteDims" inputToOutput { key: "permuteDims" value: "perm" } ruleType: "attribute" inputFrameworkOpName: "Transpose" } } mappings { frameworkName: "tensorflow" opName: "square" inputFrameworkOpName: "Square" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Square" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Square" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Square" } } mappings { frameworkName: "tensorflow" opName: "segment_min" inputFrameworkOpName: "SegmentMin" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "SegmentMin" } } mappings { frameworkName: "tensorflow" opName: "switch" inputFrameworkOpName: "Switch" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "pred" outputTensorName: "input" outputTensorName: "predicate" inputToOutput { key: "input" value: "data" } inputToOutput { key: "predicate" value: "pred" } ruleType: "tensor" inputFrameworkOpName: "Switch" } } mappings { frameworkName: "tensorflow" opName: "unsorted_segment_max" inputFrameworkOpName: "UnsortedSegmentMax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "UnsortedSegmentMax" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "numSegments" inputToOutput { key: "numSegments" value: "num_segments" } ruleType: "attribute" inputFrameworkOpName: "UnsortedSegmentMax" } } mappings { frameworkName: "tensorflow" opName: "segment_sum" inputFrameworkOpName: "SegmentSum" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "SegmentSum" } } mappings { frameworkName: "tensorflow" opName: "resize_bilinear" inputFrameworkOpName: "ResizeBilinear" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "size" outputTensorName: "image" outputTensorName: "newImageSize" inputToOutput { key: "image" value: "images" } inputToOutput { key: "newImageSize" value: "size" } ruleType: "tensor" inputFrameworkOpName: "ResizeBilinear" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "align_corners" inputBooleanName: "half_pixel_centers" outputBooleanName: "alignCorners" outputBooleanName: "halfPixelCenter" inputToOutput { key: "alignCorners" value: "align_corners" } inputToOutput { key: "halfPixelCenter" value: "half_pixel_centers" } ruleType: "attribute" inputFrameworkOpName: "ResizeBilinear" } } mappings { frameworkName: "tensorflow" opName: "softmax" inputFrameworkOpName: "Softmax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "logits" outputTensorName: "input" inputToOutput { key: "input" value: "logits" } ruleType: "tensor" inputFrameworkOpName: "Softmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dimension" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dimension" int64Value: 1 argType: INT64 } transformerArgs { name: "inPlace" argType: BOOL } } transformerArgs { key: "value" transformerArgs { name: "dimension" int64Value: 1 argType: INT64 } transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Softmax" } } mappings { frameworkName: "tensorflow" opName: "split_list" inputFrameworkOpName: "TensorArraySplitV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "lengths" inputTensorName: "value" inputTensorName: "value" outputTensorName: "sizes" outputTensorName: "list" outputTensorName: "array" inputToOutput { key: "sizes" value: "lengths" } inputToOutput { key: "list" value: "value" } inputToOutput { key: "array" value: "value" } ruleType: "tensor" inputFrameworkOpName: "TensorArraySplitV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "TensorArraySplitV2" } } mappings { frameworkName: "tensorflow" opName: "erf" inputFrameworkOpName: "Erf" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Erf" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Erf" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Erf" } } mappings { frameworkName: "tensorflow" opName: "split_list" inputFrameworkOpName: "TensorArraySplitV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "lengths" inputTensorName: "value" inputTensorName: "value" outputTensorName: "sizes" outputTensorName: "list" outputTensorName: "array" inputToOutput { key: "sizes" value: "lengths" } inputToOutput { key: "list" value: "value" } inputToOutput { key: "array" value: "value" } ruleType: "tensor" inputFrameworkOpName: "TensorArraySplitV3" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "TensorArraySplitV3" } } mappings { frameworkName: "tensorflow" opName: "relu" inputFrameworkOpName: "Relu" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "features" outputTensorName: "input" inputToOutput { key: "input" value: "features" } ruleType: "tensor" inputFrameworkOpName: "Relu" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "cutoff" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "cutoff" argType: DOUBLE } } inputFrameworkOpName: "Relu" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Relu" } } mappings { frameworkName: "tensorflow" opName: "ceil" inputFrameworkOpName: "Ceil" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Ceil" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Ceil" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Ceil" } } mappings { frameworkName: "tensorflow" opName: "l2_loss" inputFrameworkOpName: "L2Loss" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "t" outputTensorName: "input" inputToOutput { key: "input" value: "t" } ruleType: "tensor" inputFrameworkOpName: "L2Loss" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "L2Loss" } } mappings { frameworkName: "tensorflow" opName: "switch" inputFrameworkOpName: "If" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "cond" outputTensorName: "input" outputTensorName: "predicate" inputToOutput { key: "input" value: "input" } inputToOutput { key: "predicate" value: "cond" } ruleType: "tensor" inputFrameworkOpName: "If" } } mappings { frameworkName: "tensorflow" opName: "cast" inputFrameworkOpName: "Cast" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Cast" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "DstT" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "DstT" } ruleType: "attribute" inputFrameworkOpName: "Cast" } rule { ruleName: "datatypetoint" functionName: "datatypetoint" outputIntName: "dst" inputDataTypeName: "DstT" inputToOutput { key: "dst" value: "DstT" } ruleType: "attribute" inputFrameworkOpName: "Cast" } } mappings { frameworkName: "tensorflow" opName: "minimum" inputFrameworkOpName: "Minimum" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Minimum" } } mappings { frameworkName: "tensorflow" opName: "non_max_suppression" inputFrameworkOpName: "NonMaxSuppression" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "boxes" inputTensorName: "scores" inputTensorName: "max_output_size" outputTensorName: "boxes" outputTensorName: "scales" outputTensorName: "maxOutputSize" inputToOutput { key: "boxes" value: "boxes" } inputToOutput { key: "scales" value: "scores" } inputToOutput { key: "maxOutputSize" value: "max_output_size" } ruleType: "tensor" inputFrameworkOpName: "NonMaxSuppression" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "scoreThreshold" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "scoreThreshold" doubleValue: 0.5 argType: DOUBLE argIndex: 1 } } inputFrameworkOpName: "NonMaxSuppression" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "iou_threshold" inputToOutput { key: "iouThreshold" value: "iou_threshold" } ruleType: "attribute" inputFrameworkOpName: "NonMaxSuppression" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" inputToOutput { key: "maxOutputSize" value: "max_output_size" } ruleType: "attribute" inputFrameworkOpName: "NonMaxSuppression" } } mappings { frameworkName: "tensorflow" opName: "lstmBlock" inputFrameworkOpName: "BlockLSTM" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "seq_len_max" inputTensorName: "x" inputTensorName: "cs_prev" inputTensorName: "h_prev" inputTensorName: "w" inputTensorName: "wci" inputTensorName: "wcf" inputTensorName: "wco" inputTensorName: "b" outputTensorName: "maxTSLength" outputTensorName: "input" outputTensorName: "cLast" outputTensorName: "yLast" outputTensorName: "W" outputTensorName: "Wci" outputTensorName: "Wcf" outputTensorName: "Wco" outputTensorName: "b" inputToOutput { key: "maxTSLength" value: "seq_len_max" } inputToOutput { key: "input" value: "x" } inputToOutput { key: "cLast" value: "cs_prev" } inputToOutput { key: "yLast" value: "h_prev" } inputToOutput { key: "W" value: "w" } inputToOutput { key: "Wci" value: "wci" } inputToOutput { key: "Wcf" value: "wcf" } inputToOutput { key: "Wco" value: "wco" } inputToOutput { key: "b" value: "b" } ruleType: "tensor" inputFrameworkOpName: "BlockLSTM" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "forget_bias" inputFloatName: "cell_clip" outputDoubleName: "forgetBias" outputDoubleName: "clippingCellValue" inputToOutput { key: "forgetBias" value: "forget_bias" } inputToOutput { key: "clippingCellValue" value: "cell_clip" } ruleType: "attribute" inputFrameworkOpName: "BlockLSTM" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "peephole" inputBooleanName: "use_peephole" inputToOutput { key: "peephole" value: "use_peephole" } ruleType: "attribute" inputFrameworkOpName: "BlockLSTM" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dataFormat" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dataFormat" argType: INT64 } } inputFrameworkOpName: "BlockLSTM" } } mappings { frameworkName: "tensorflow" opName: "shape_of" inputFrameworkOpName: "Shape" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Shape" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Shape" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "out_type" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "out_type" } ruleType: "attribute" inputFrameworkOpName: "Shape" } } mappings { frameworkName: "tensorflow" opName: "check_numerics" inputFrameworkOpName: "CheckNumerics" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" outputTensorName: "input" inputToOutput { key: "input" value: "tensor" } ruleType: "tensor" inputFrameworkOpName: "CheckNumerics" } rule { ruleName: "convertinputstringtondarray" functionName: "convertinputstringtondarray" inputStringAttrName: "message" inputToOutput { key: "message" value: "message" } ruleType: "attribute" inputFrameworkOpName: "CheckNumerics" } } mappings { frameworkName: "tensorflow" opName: "reduce_max" inputFrameworkOpName: "Max" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Max" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "keep_dims" outputBooleanName: "keepDims" inputToOutput { key: "keepDims" value: "keep_dims" } ruleType: "attribute" inputFrameworkOpName: "Max" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" inputToOutput { key: "dimensions" value: "reduction_indices" } ruleType: "attribute" inputFrameworkOpName: "Max" } } mappings { frameworkName: "tensorflow" opName: "tensorarrayv3" inputFrameworkOpName: "TensorArrayV3" rule { ruleName: "datatypetoint" functionName: "datatypetoint" outputIntName: "dataType" inputDataTypeName: "dtype" inputToOutput { key: "dataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayV3" } } mappings { frameworkName: "tensorflow" opName: "scatter_max" inputFrameworkOpName: "ScatterMax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "ref" inputTensorName: "indices" inputTensorName: "updates" outputTensorName: "input" outputTensorName: "indices" outputTensorName: "updates" inputToOutput { key: "input" value: "ref" } inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } ruleType: "tensor" inputFrameworkOpName: "ScatterMax" } } mappings { frameworkName: "tensorflow" opName: "isnan" inputFrameworkOpName: "IsNan" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "IsNan" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "IsNan" } } mappings { frameworkName: "tensorflow" opName: "gather_list" inputFrameworkOpName: "TensorArrayGather" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "flow_in" outputTensorName: "indices" outputTensorName: "list" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayGather" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayGather" } } mappings { frameworkName: "tensorflow" opName: "bincount" inputFrameworkOpName: "Bincount" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "weights" inputTensorName: "arr" outputTensorName: "weights" outputTensorName: "values" inputToOutput { key: "weights" value: "weights" } inputToOutput { key: "values" value: "arr" } ruleType: "tensor" inputFrameworkOpName: "Bincount" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "minLength" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "minLength" argType: INT64 } } inputFrameworkOpName: "Bincount" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "maxLength" inputToOutput { key: "maxLength" value: "size" } ruleType: "attribute" inputFrameworkOpName: "Bincount" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "outputType" inputToOutput { key: "outputType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Bincount" } indexOverrides { key: 1 value: 2 } indexOverrides { key: 2 value: 1 } } mappings { frameworkName: "tensorflow" opName: "space_to_batch_nd" inputFrameworkOpName: "SpaceToBatchND" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "block_shape" inputTensorName: "paddings" outputTensorName: "input" outputTensorName: "blockShape" outputTensorName: "padding" inputToOutput { key: "input" value: "input" } inputToOutput { key: "blockShape" value: "block_shape" } inputToOutput { key: "padding" value: "paddings" } ruleType: "tensor" inputFrameworkOpName: "SpaceToBatchND" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "blocks" inputToOutput { key: "blocks" value: "block_shape" } ruleType: "attribute" inputFrameworkOpName: "SpaceToBatchND" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "SpaceToBatchND" } } mappings { frameworkName: "tensorflow" opName: "reduce_prod" inputFrameworkOpName: "Prod" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Prod" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "keep_dims" outputBooleanName: "keepDims" inputToOutput { key: "keepDims" value: "keep_dims" } ruleType: "attribute" inputFrameworkOpName: "Prod" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" inputToOutput { key: "dimensions" value: "reduction_indices" } ruleType: "attribute" inputFrameworkOpName: "Prod" } } mappings { frameworkName: "tensorflow" opName: "lgamma" inputFrameworkOpName: "Lgamma" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Lgamma" } } mappings { frameworkName: "tensorflow" opName: "matmul" inputFrameworkOpName: "BatchMatMulV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "BatchMatMulV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "alpha" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "alpha" doubleValue: 1.0 argType: DOUBLE } } inputFrameworkOpName: "BatchMatMulV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "beta" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "beta" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } } inputFrameworkOpName: "BatchMatMulV2" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "transX" outputIntName: "transY" inputBooleanName: "adj_x" inputBooleanName: "adj_y" inputToOutput { key: "transX" value: "adj_x" } inputToOutput { key: "transY" value: "adj_y" } ruleType: "attribute" inputFrameworkOpName: "BatchMatMulV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "transZ" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "transZ" argType: INT64 argIndex: 2 } } inputFrameworkOpName: "BatchMatMulV2" } } mappings { frameworkName: "tensorflow" opName: "unique_with_counts" inputFrameworkOpName: "UniqueWithCounts" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "UniqueWithCounts" } } mappings { frameworkName: "tensorflow" opName: "randomuniform" inputFrameworkOpName: "RandomUniformInt" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" inputTensorName: "minval" inputTensorName: "maxval" outputTensorName: "shape" outputTensorName: "min" outputTensorName: "max" inputToOutput { key: "shape" value: "shape" } inputToOutput { key: "min" value: "minval" } inputToOutput { key: "max" value: "maxval" } ruleType: "tensor" inputFrameworkOpName: "RandomUniformInt" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" inputToOutput { key: "min" value: "minval" } inputToOutput { key: "max" value: "maxval" } ruleType: "attribute" inputFrameworkOpName: "RandomUniformInt" } rule { ruleName: "datatypetoint" functionName: "datatypetoint" outputIntName: "dtype" inputDataTypeName: "Tout" inputToOutput { key: "dtype" value: "Tout" } ruleType: "attribute" inputFrameworkOpName: "RandomUniformInt" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "Tout" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "Tout" } ruleType: "attribute" inputFrameworkOpName: "RandomUniformInt" } } mappings { frameworkName: "tensorflow" opName: "selu" inputFrameworkOpName: "Selu" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "features" outputTensorName: "input" inputToOutput { key: "input" value: "features" } ruleType: "tensor" inputFrameworkOpName: "Selu" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Selu" } } mappings { frameworkName: "tensorflow" opName: "argmin" inputFrameworkOpName: "ArgMin" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "ArgMin" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "keepDims" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "keepDims" argType: BOOL } } inputFrameworkOpName: "ArgMin" } } mappings { frameworkName: "tensorflow" opName: "resize_bicubic" inputFrameworkOpName: "ResizeBicubic" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "size" outputTensorName: "image" outputTensorName: "size" inputToOutput { key: "image" value: "images" } inputToOutput { key: "size" value: "size" } ruleType: "tensor" inputFrameworkOpName: "ResizeBicubic" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "align_corners" inputBooleanName: "half_pixel_centers" outputBooleanName: "alignCorners" outputBooleanName: "alignPixelCenters" inputToOutput { key: "alignCorners" value: "align_corners" } inputToOutput { key: "alignPixelCenters" value: "half_pixel_centers" } ruleType: "attribute" inputFrameworkOpName: "ResizeBicubic" } } mappings { frameworkName: "tensorflow" opName: "atanh" inputFrameworkOpName: "Atanh" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Atanh" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Atanh" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Atanh" } } mappings { frameworkName: "tensorflow" opName: "split_v" inputFrameworkOpName: "SplitV" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "value" inputTensorName: "size_splits" inputTensorName: "split_dim" outputTensorName: "input" outputTensorName: "sizes" outputTensorName: "_a" inputToOutput { key: "input" value: "value" } inputToOutput { key: "sizes" value: "size_splits" } inputToOutput { key: "_a" value: "split_dim" } ruleType: "tensor" inputFrameworkOpName: "SplitV" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "num_split" outputIntName: "numSplit" inputToOutput { key: "numSplit" value: "num_split" } ruleType: "attribute" inputFrameworkOpName: "SplitV" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "dimensions" inputToOutput { key: "dimensions" value: "split_dim" } ruleType: "attribute" inputFrameworkOpName: "SplitV" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "dimensions" inputToOutput { key: "dimensions" value: "split_dim" } ruleType: "attribute" inputFrameworkOpName: "SplitV" } } mappings { frameworkName: "tensorflow" opName: "mirror_pad" inputFrameworkOpName: "MirrorPad" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "paddings" outputTensorName: "input" outputTensorName: "paddings" inputToOutput { key: "input" value: "input" } inputToOutput { key: "paddings" value: "paddings" } ruleType: "tensor" inputFrameworkOpName: "MirrorPad" } rule { ruleName: "stringnotequalsadapterrule" functionName: "stringnotequalsadapterrule" inputStringAttrName: "mode" outputIntName: "mode" inputFloatName: "mode" inputToOutput { key: "mode" value: "mode" } ruleType: "attribute" transformerArgs { key: "mode" transformerArgs { name: "mode" stringValue: "REFLECT" } } inputFrameworkOpName: "MirrorPad" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "isSymmetric" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "isSymmetric" boolValue: true argType: BOOL } } inputFrameworkOpName: "MirrorPad" } } mappings { frameworkName: "tensorflow" opName: "shapes_of" inputFrameworkOpName: "ShapeN" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "ShapeN" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "ShapeN" } } mappings { frameworkName: "tensorflow" opName: "cos" inputFrameworkOpName: "Cos" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Cos" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Cos" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Cos" } } mappings { frameworkName: "tensorflow" opName: "sqrt" inputFrameworkOpName: "Sqrt" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Sqrt" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Sqrt" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Sqrt" } } mappings { frameworkName: "tensorflow" opName: "deconv2d_tf" inputFrameworkOpName: "Conv2DBackpropInput" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input_sizes" inputTensorName: "filter" outputTensorName: "gradIShape" outputTensorName: "weights" inputToOutput { key: "gradIShape" value: "input_sizes" } inputToOutput { key: "weights" value: "filter" } ruleType: "tensor" inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 5 } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "wFormat" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "wFormat" argType: INT64 argIndex: 10 } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "stringnotequalsadapterrule" functionName: "stringnotequalsadapterrule" inputStringAttrName: "data_format" outputIntName: "isNCHW" inputFloatName: "data_format" inputToOutput { key: "isNCHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCHW" transformerArgs { name: "data_format" argIndex: 9 stringValue: "NCHW" } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 8 stringValue: "SAME" } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "sW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "dH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "dH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } transformerArgs { key: "dH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 6 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 6 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 6 stringValue: "dilations" } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "conditionalfieldvalueintindex" functionName: "conditionalfieldvalueintindex" inputStringAttrName: "data_format" outputIntName: "dW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "dW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } transformerArgs { key: "dW" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 7 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 7 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 7 stringValue: "dilations" } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "kH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "kH" int64Value: -1 argType: INT64 } } inputFrameworkOpName: "Conv2DBackpropInput" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "kW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "kW" int64Value: -1 argType: INT64 argIndex: 1 } } inputFrameworkOpName: "Conv2DBackpropInput" } } mappings { frameworkName: "tensorflow" opName: "floordiv" inputFrameworkOpName: "FloorDiv" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "FloorDiv" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "FloorDiv" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "FloorDiv" } } mappings { frameworkName: "tensorflow" opName: "stack_list" inputFrameworkOpName: "TensorArrayConcatV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "flow_in" outputTensorName: "list" inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayConcatV3" } } mappings { frameworkName: "tensorflow" opName: "stack_list" inputFrameworkOpName: "TensorArrayConcatV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "flow_in" outputTensorName: "list" inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayConcatV2" } } mappings { frameworkName: "tensorflow" opName: "identity" inputFrameworkOpName: "CopyHost" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "CopyHost" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "CopyHost" } } mappings { frameworkName: "tensorflow" opName: "neg" inputFrameworkOpName: "Neg" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Neg" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Neg" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Neg" } } mappings { frameworkName: "tensorflow" opName: "top_k" inputFrameworkOpName: "TopKV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "TopKV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "sorted" outputBooleanName: "needSort" inputToOutput { key: "needSort" value: "sorted" } ruleType: "attribute" inputFrameworkOpName: "TopKV2" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "k" inputToOutput { key: "k" value: "k" } ruleType: "attribute" inputFrameworkOpName: "TopKV2" } } mappings { frameworkName: "tensorflow" opName: "resize_area" inputFrameworkOpName: "ResizeArea" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "size" outputTensorName: "image" outputTensorName: "size" inputToOutput { key: "image" value: "images" } inputToOutput { key: "size" value: "size" } ruleType: "tensor" inputFrameworkOpName: "ResizeArea" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "align_corners" outputBooleanName: "alignCorners" inputToOutput { key: "alignCorners" value: "align_corners" } ruleType: "attribute" inputFrameworkOpName: "ResizeArea" } } mappings { frameworkName: "tensorflow" opName: "triangular_solve" inputFrameworkOpName: "MatrixTriangularSolve" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "matrix" inputTensorName: "rhs" outputTensorName: "a" outputTensorName: "b" inputToOutput { key: "a" value: "matrix" } inputToOutput { key: "b" value: "rhs" } ruleType: "tensor" inputFrameworkOpName: "MatrixTriangularSolve" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "adjoint" inputBooleanName: "lower" outputBooleanName: "useAdjoint" outputBooleanName: "isLower" inputToOutput { key: "useAdjoint" value: "adjoint" } inputToOutput { key: "isLower" value: "lower" } ruleType: "attribute" inputFrameworkOpName: "MatrixTriangularSolve" } } mappings { frameworkName: "tensorflow" opName: "softsign" inputFrameworkOpName: "Softsign" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "features" outputTensorName: "input" inputToOutput { key: "input" value: "features" } ruleType: "tensor" inputFrameworkOpName: "Softsign" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Softsign" } } mappings { frameworkName: "tensorflow" opName: "gather" inputFrameworkOpName: "GatherV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "params" inputTensorName: "indices" outputTensorName: "input" outputTensorName: "indices" inputToOutput { key: "input" value: "params" } inputToOutput { key: "indices" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "GatherV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "GatherV2" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "dimensions" inputToOutput { key: "dimensions" value: "axis" } ruleType: "attribute" inputFrameworkOpName: "GatherV2" } } mappings { frameworkName: "tensorflow" opName: "fake_quant_with_min_max_args" inputFrameworkOpName: "FakeQuantWithMinMaxArgs" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "inputs" outputTensorName: "input" inputToOutput { key: "input" value: "inputs" } ruleType: "tensor" inputFrameworkOpName: "FakeQuantWithMinMaxArgs" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "num_bits" outputIntName: "numBits" inputFloatName: "min" inputFloatName: "max" outputDoubleName: "min" outputDoubleName: "max" inputBooleanName: "narrow_range" outputBooleanName: "narrowRange" inputToOutput { key: "min" value: "min" } inputToOutput { key: "max" value: "max" } inputToOutput { key: "numBits" value: "num_bits" } inputToOutput { key: "narrowRange" value: "narrow_range" } ruleType: "attribute" inputFrameworkOpName: "FakeQuantWithMinMaxArgs" } } mappings { frameworkName: "tensorflow" opName: "all" inputFrameworkOpName: "All" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "All" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "keep_dims" outputBooleanName: "keepDims" inputToOutput { key: "keepDims" value: "keep_dims" } ruleType: "attribute" inputFrameworkOpName: "All" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "dimensions" inputToOutput { key: "dimensions" value: "reduction_indices" } ruleType: "attribute" inputFrameworkOpName: "All" } } mappings { frameworkName: "tensorflow" opName: "tan" inputFrameworkOpName: "Tan" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Tan" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Tan" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Tan" } } mappings { frameworkName: "tensorflow" opName: "fill" inputFrameworkOpName: "Fill" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "dims" outputTensorName: "shapeArray" inputToOutput { key: "shapeArray" value: "dims" } ruleType: "tensor" inputFrameworkOpName: "Fill" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputDoubleName: "value" inputToOutput { key: "value" value: "value" } ruleType: "attribute" inputFrameworkOpName: "Fill" } rule { ruleName: "datatypetoint" functionName: "datatypetoint" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Fill" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Fill" } } mappings { frameworkName: "tensorflow" opName: "scatter_add" inputFrameworkOpName: "ScatterAdd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "ref" inputTensorName: "indices" inputTensorName: "updates" outputTensorName: "input" outputTensorName: "indices" outputTensorName: "updates" inputToOutput { key: "input" value: "ref" } inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } ruleType: "tensor" inputFrameworkOpName: "ScatterAdd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "lock" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "lock" argType: BOOL } } inputFrameworkOpName: "ScatterAdd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "checkIndices" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "checkIndices" argType: BOOL argIndex: 1 } } inputFrameworkOpName: "ScatterAdd" } } mappings { frameworkName: "tensorflow" opName: "max_pool_with_argmax" inputFrameworkOpName: "MaxPoolWithArgmax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "kH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "kH" int64Value: 1 argType: INT64 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "kW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "kW" int64Value: 1 argType: INT64 argIndex: 1 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "sH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "sH" int64Value: 1 argType: INT64 argIndex: 2 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "sW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "sW" int64Value: 1 argType: INT64 argIndex: 3 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" int64Value: 1 argType: INT64 argIndex: 4 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" int64Value: 1 argType: INT64 argIndex: 5 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 6 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 7 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "extraParam0" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "extraParam0" argType: INT64 argIndex: 9 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "isNHWC" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "isNHWC" int64Value: 1 argType: INT64 argIndex: 10 } } inputFrameworkOpName: "MaxPoolWithArgmax" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "sameMode" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "sameMode" int64Value: 8 argType: INT64 argIndex: 8 } } inputFrameworkOpName: "MaxPoolWithArgmax" } } mappings { frameworkName: "tensorflow" opName: "matrix_diag_part" inputFrameworkOpName: "MatrixDiagPart" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "MatrixDiagPart" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "MatrixDiagPart" } } mappings { frameworkName: "tensorflow" opName: "fused_batch_norm" inputFrameworkOpName: "FusedBatchNormV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "scale" inputTensorName: "offset" inputTensorName: "mean" inputTensorName: "variance" outputTensorName: "input" outputTensorName: "scale" outputTensorName: "offset" outputTensorName: "mean" outputTensorName: "variance" inputToOutput { key: "input" value: "x" } inputToOutput { key: "scale" value: "scale" } inputToOutput { key: "offset" value: "offset" } inputToOutput { key: "mean" value: "mean" } inputToOutput { key: "variance" value: "variance" } ruleType: "tensor" inputFrameworkOpName: "FusedBatchNormV3" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "epsilon" outputDoubleName: "epsilon" inputToOutput { key: "epsilon" value: "epsilon" } ruleType: "attribute" inputFrameworkOpName: "FusedBatchNormV3" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "isTraining" inputBooleanName: "is_training" inputToOutput { key: "isTraining" value: "is_training" } ruleType: "attribute" inputFrameworkOpName: "FusedBatchNormV3" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "dataFormat" inputToOutput { key: "dataFormat" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dataFormat" transformerArgs { name: "data_format" argType: STRING stringValue: "NCHW" } } inputFrameworkOpName: "FusedBatchNormV3" } } mappings { frameworkName: "tensorflow" opName: "gather_list" inputFrameworkOpName: "TensorArrayGatherV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "flow_in" outputTensorName: "indices" outputTensorName: "list" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayGatherV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayGatherV2" } } mappings { frameworkName: "tensorflow" opName: "noop" inputFrameworkOpName: "NoOp" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" ruleType: "tensor" inputFrameworkOpName: "NoOp" } } mappings { frameworkName: "tensorflow" opName: "gather_list" inputFrameworkOpName: "TensorArrayGatherV3" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "flow_in" outputTensorName: "indices" outputTensorName: "list" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "list" value: "flow_in" } ruleType: "tensor" inputFrameworkOpName: "TensorArrayGatherV3" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "TensorArrayGatherV3" } } mappings { frameworkName: "tensorflow" opName: "lrn" inputFrameworkOpName: "LRN" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "LRN" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "depth_radius" outputIntName: "depth" inputFloatName: "alpha" inputFloatName: "bias" inputFloatName: "beta" outputDoubleName: "alpha" outputDoubleName: "bias" outputDoubleName: "beta" inputToOutput { key: "depth" value: "depth_radius" } inputToOutput { key: "alpha" value: "alpha" } inputToOutput { key: "bias" value: "bias" } inputToOutput { key: "beta" value: "beta" } ruleType: "attribute" inputFrameworkOpName: "LRN" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "LRN" } } mappings { frameworkName: "tensorflow" opName: "betainc" inputFrameworkOpName: "Betainc" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "a" inputTensorName: "b" inputTensorName: "x" outputTensorName: "a" outputTensorName: "b" outputTensorName: "input" inputToOutput { key: "a" value: "a" } inputToOutput { key: "b" value: "b" } inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Betainc" } } mappings { frameworkName: "tensorflow" opName: "diag_part" inputFrameworkOpName: "DiagPart" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "DiagPart" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "DiagPart" } } mappings { frameworkName: "tensorflow" opName: "concat" inputFrameworkOpName: "Concat" rule { ruleName: "multiinputindex" functionName: "multiinputindex" inputTensorName: "values" inputTensorName: "concat_dim" outputTensorName: "input" outputTensorName: "concatDimension" inputToOutput { key: "input" value: "values" } inputToOutput { key: "concatDimension" value: "concat_dim" } ruleType: "tensor" inputFrameworkOpName: "Concat" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" inputToOutput { key: "concatDimension" value: "concat_dim" } ruleType: "attribute" inputFrameworkOpName: "Concat" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "isDynamicAxis" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "isDynamicAxis" boolValue: true argType: BOOL } } inputFrameworkOpName: "Concat" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Concat" } } mappings { frameworkName: "tensorflow" opName: "segment_prod" inputFrameworkOpName: "SegmentProd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "SegmentProd" } } mappings { frameworkName: "tensorflow" opName: "top_k" inputFrameworkOpName: "TopK" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "TopK" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "k" outputIntName: "k" inputBooleanName: "sorted" outputBooleanName: "needSort" inputToOutput { key: "needSort" value: "sorted" } inputToOutput { key: "k" value: "k" } ruleType: "attribute" inputFrameworkOpName: "TopK" } } mappings { frameworkName: "tensorflow" opName: "fake_quant_with_min_max_vars_per_channel" inputFrameworkOpName: "FakeQuantWithMinMaxVarsPerChannel" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "inputs" inputTensorName: "min" inputTensorName: "max" outputTensorName: "input" outputTensorName: "min" outputTensorName: "max" inputToOutput { key: "input" value: "inputs" } inputToOutput { key: "min" value: "min" } inputToOutput { key: "max" value: "max" } ruleType: "tensor" inputFrameworkOpName: "FakeQuantWithMinMaxVarsPerChannel" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "num_bits" outputIntName: "numBits" inputBooleanName: "narrow_range" outputBooleanName: "narrowed" inputToOutput { key: "numBits" value: "num_bits" } inputToOutput { key: "narrowed" value: "narrow_range" } ruleType: "attribute" inputFrameworkOpName: "FakeQuantWithMinMaxVarsPerChannel" } } mappings { frameworkName: "tensorflow" opName: "maximum" inputFrameworkOpName: "Maximum" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Maximum" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Maximum" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Maximum" } } mappings { frameworkName: "tensorflow" opName: "mergeadd" inputFrameworkOpName: "AccumulateNV2" rule { ruleName: "multiinputindex" functionName: "multiinputindex" inputTensorName: "inputs" outputTensorName: "inArrs" inputToOutput { key: "inArrs" value: "inputs" } ruleType: "tensor" inputFrameworkOpName: "AccumulateNV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "AccumulateNV2" } } mappings { frameworkName: "tensorflow" opName: "asinh" inputFrameworkOpName: "Asinh" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Asinh" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Asinh" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Asinh" } } mappings { frameworkName: "tensorflow" opName: "fused_batch_norm" inputFrameworkOpName: "FusedBatchNormV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "scale" inputTensorName: "offset" inputTensorName: "mean" inputTensorName: "variance" outputTensorName: "input" outputTensorName: "scale" outputTensorName: "offset" outputTensorName: "mean" outputTensorName: "variance" inputToOutput { key: "input" value: "x" } inputToOutput { key: "scale" value: "scale" } inputToOutput { key: "offset" value: "offset" } inputToOutput { key: "mean" value: "mean" } inputToOutput { key: "variance" value: "variance" } ruleType: "tensor" inputFrameworkOpName: "FusedBatchNormV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "epsilon" outputDoubleName: "epsilon" inputToOutput { key: "epsilon" value: "epsilon" } ruleType: "attribute" inputFrameworkOpName: "FusedBatchNormV2" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "isTraining" inputBooleanName: "is_training" inputToOutput { key: "isTraining" value: "is_training" } ruleType: "attribute" inputFrameworkOpName: "FusedBatchNormV2" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "data_format" inputStringAttrName: "data_format" outputIntName: "dataFormat" inputToOutput { key: "dataFormat" value: "data_format" } ruleType: "attribute" transformerArgs { key: "dataFormat" transformerArgs { name: "data_format" argType: STRING stringValue: "NCHW" } } inputFrameworkOpName: "FusedBatchNormV2" } } mappings { frameworkName: "tensorflow" opName: "Reciprocal" inputFrameworkOpName: "Reciprocal" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Reciprocal" } } mappings { frameworkName: "tensorflow" opName: "in_top_k" inputFrameworkOpName: "InTopKV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "targets" inputTensorName: "predictions" outputTensorName: "target" outputTensorName: "predictions" inputToOutput { key: "target" value: "targets" } inputToOutput { key: "predictions" value: "predictions" } ruleType: "tensor" inputFrameworkOpName: "InTopKV2" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "k" inputToOutput { key: "k" value: "k" } ruleType: "attribute" inputFrameworkOpName: "InTopKV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "sorted" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "sorted" boolValue: true argType: BOOL } } inputFrameworkOpName: "InTopKV2" } } mappings { frameworkName: "tensorflow" opName: "less" inputFrameworkOpName: "Less" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Less" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Less" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Less" } } mappings { frameworkName: "tensorflow" opName: "nth_element" inputFrameworkOpName: "NthElement" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "n" inputTensorName: "input" outputTensorName: "n" outputTensorName: "input" inputToOutput { key: "n" value: "n" } inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "NthElement" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" inputBooleanName: "reverse" outputBooleanName: "reverse" inputToOutput { key: "reverse" value: "reverse" } ruleType: "attribute" inputFrameworkOpName: "NthElement" } } mappings { frameworkName: "tensorflow" opName: "matmul" inputFrameworkOpName: "BatchMatMul" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "BatchMatMul" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "alpha" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "alpha" doubleValue: 1.0 argType: DOUBLE } } inputFrameworkOpName: "BatchMatMul" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "beta" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "beta" doubleValue: 1.0 argType: DOUBLE argIndex: 1 } } inputFrameworkOpName: "BatchMatMul" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "transX" outputIntName: "transY" inputBooleanName: "adj_x" inputBooleanName: "adj_y" inputToOutput { key: "transX" value: "adj_x" } inputToOutput { key: "transY" value: "adj_y" } ruleType: "attribute" inputFrameworkOpName: "BatchMatMul" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "transZ" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "transZ" argType: INT64 argIndex: 2 } } inputFrameworkOpName: "BatchMatMul" } } mappings { frameworkName: "tensorflow" opName: "multiply" inputFrameworkOpName: "Mul" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Mul" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Mul" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Mul" } } mappings { frameworkName: "tensorflow" opName: "identity_n" inputFrameworkOpName: "IdentityN" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "IdentityN" } } mappings { frameworkName: "tensorflow" opName: "lu" inputFrameworkOpName: "Lu" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Lu" } } mappings { frameworkName: "tensorflow" opName: "diag" inputFrameworkOpName: "Diag" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "diagonal" outputTensorName: "input" inputToOutput { key: "input" value: "diagonal" } ruleType: "tensor" inputFrameworkOpName: "Diag" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Diag" } } mappings { frameworkName: "tensorflow" opName: "range" inputFrameworkOpName: "Range" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "start" inputTensorName: "limit" inputTensorName: "delta" outputTensorName: "from" outputTensorName: "to" outputTensorName: "step" inputToOutput { key: "from" value: "start" } inputToOutput { key: "to" value: "limit" } inputToOutput { key: "step" value: "delta" } ruleType: "tensor" inputFrameworkOpName: "Range" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" inputToOutput { key: "from" value: "start" } inputToOutput { key: "to" value: "limit" } inputToOutput { key: "step" value: "delta" } ruleType: "attribute" inputFrameworkOpName: "Range" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "Tidx" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "Tidx" } ruleType: "attribute" inputFrameworkOpName: "Range" } } mappings { frameworkName: "tensorflow" opName: "histogram_fixed_width" inputFrameworkOpName: "HistogramFixedWidth" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "values" inputTensorName: "value_range" inputTensorName: "nbins" outputTensorName: "input" outputTensorName: "range" outputTensorName: "numBins" inputToOutput { key: "input" value: "values" } inputToOutput { key: "range" value: "value_range" } inputToOutput { key: "numBins" value: "nbins" } ruleType: "tensor" inputFrameworkOpName: "HistogramFixedWidth" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "nbins" inputToOutput { key: "nbins" value: "nbins" } ruleType: "attribute" inputFrameworkOpName: "HistogramFixedWidth" } } mappings { frameworkName: "tensorflow" opName: "divide_no_nan" inputFrameworkOpName: "DivNoNan" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "DivNoNan" } } mappings { frameworkName: "tensorflow" opName: "broadcast_dynamic_shape" inputFrameworkOpName: "BroadcastArgs" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "s0" inputTensorName: "s1" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "s0" } inputToOutput { key: "y" value: "s1" } ruleType: "tensor" inputFrameworkOpName: "BroadcastArgs" } } mappings { frameworkName: "tensorflow" opName: "scatter_div" inputFrameworkOpName: "ScatterDiv" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "ref" inputTensorName: "indices" inputTensorName: "updates" outputTensorName: "input" outputTensorName: "indices" outputTensorName: "updates" inputToOutput { key: "input" value: "ref" } inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } ruleType: "tensor" inputFrameworkOpName: "ScatterDiv" } } mappings { frameworkName: "tensorflow" opName: "reshape" inputFrameworkOpName: "Reshape" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" inputTensorName: "shape" outputTensorName: "input" outputTensorName: "shape" inputToOutput { key: "input" value: "tensor" } inputToOutput { key: "shape" value: "shape" } ruleType: "tensor" inputFrameworkOpName: "Reshape" } } mappings { frameworkName: "tensorflow" opName: "copy" inputFrameworkOpName: "Copy" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Copy" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Copy" } } mappings { frameworkName: "tensorflow" opName: "slice" inputFrameworkOpName: "Slice" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "begin" inputTensorName: "size" outputTensorName: "input" outputTensorName: "b" outputTensorName: "e" inputToOutput { key: "input" value: "input" } inputToOutput { key: "b" value: "begin" } inputToOutput { key: "e" value: "size" } ruleType: "tensor" inputFrameworkOpName: "Slice" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "size" inputToOutput { key: "size" value: "size" } ruleType: "attribute" inputFrameworkOpName: "Slice" } } mappings { frameworkName: "tensorflow" opName: "leakyrelu" inputFrameworkOpName: "LeakyRelu" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "features" outputTensorName: "input" inputToOutput { key: "input" value: "features" } ruleType: "tensor" inputFrameworkOpName: "LeakyRelu" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "alpha" outputDoubleName: "alpha" inputToOutput { key: "alpha" value: "alpha" } ruleType: "attribute" inputFrameworkOpName: "LeakyRelu" } } mappings { frameworkName: "tensorflow" opName: "matrix_inverse" inputFrameworkOpName: "MatrixInverse" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "MatrixInverse" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" boolValue: true argType: BOOL } } inputFrameworkOpName: "BatchMatrixInverse" } } mappings { frameworkName: "tensorflow" opName: "tf_atan2" inputFrameworkOpName: "Atan2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Atan2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Atan2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Atan2" } } mappings { frameworkName: "tensorflow" opName: "batch_to_space" inputFrameworkOpName: "BatchToSpace" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "crops" outputTensorName: "input" outputTensorName: "crop" inputToOutput { key: "input" value: "input" } inputToOutput { key: "crop" value: "crops" } ruleType: "tensor" inputFrameworkOpName: "BatchToSpace" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "block_size" outputIntName: "blockSize" inputToOutput { key: "blockSize" value: "block_size" } ruleType: "attribute" inputFrameworkOpName: "BatchToSpace" } } mappings { frameworkName: "tensorflow" opName: "acos" inputFrameworkOpName: "Acos" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Acos" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Acos" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Acos" } } mappings { frameworkName: "tensorflow" opName: "gather_nd" inputFrameworkOpName: "GatherNd" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "params" inputTensorName: "indices" outputTensorName: "input" outputTensorName: "indices" inputToOutput { key: "input" value: "params" } inputToOutput { key: "indices" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "GatherNd" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" ruleType: "attribute" inputFrameworkOpName: "GatherNd" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "checkIndices" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "checkIndices" argType: BOOL } } inputFrameworkOpName: "GatherNd" } } mappings { frameworkName: "tensorflow" opName: "maxpool2d" inputFrameworkOpName: "MaxPoolV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "extraParam0" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "extraParam0" argType: INT64 argIndex: 9 } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pH" argType: INT64 argIndex: 4 } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "pW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "pW" argType: INT64 argIndex: 5 } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dW" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dW" int64Value: 1 argType: INT64 argIndex: 6 } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dH" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dH" int64Value: 1 argType: INT64 argIndex: 7 } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "stringnotequalsadapterrule" functionName: "stringnotequalsadapterrule" inputStringAttrName: "data_format" outputIntName: "isNCHW" inputFloatName: "data_format" inputToOutput { key: "isNCHW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "isNCHW" transformerArgs { name: "data_format" argIndex: 10 stringValue: "NCHW" } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputIntName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING argIndex: 8 stringValue: "SAME" } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "conditionalfieldvalueintindexndarray" functionName: "conditionalfieldvalueintindexndarray" inputStringAttrName: "data_format" outputIntName: "sH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sH" transformerArgs { name: "targetValue" argIndex: 2 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" argIndex: 2 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" argIndex: 2 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } transformerArgs { key: "sH" transformerArgs { name: "targetValue" argIndex: 2 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 argIndex: 2 } transformerArgs { name: "falseIndex" int64Value: 1 argIndex: 2 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 2 stringValue: "strides" } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "conditionalfieldvalueintindexndarray" functionName: "conditionalfieldvalueintindexndarray" inputStringAttrName: "data_format" outputIntName: "sW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "sW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "sW" transformerArgs { name: "targetValue" argIndex: 3 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" argIndex: 3 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" argIndex: 3 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } transformerArgs { key: "sW" transformerArgs { name: "targetValue" argIndex: 3 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 3 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 3 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 3 stringValue: "strides" } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "conditionalfieldvalueintindexndarray" functionName: "conditionalfieldvalueintindexndarray" inputStringAttrName: "data_format" outputIntName: "kH" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "kH" value: "data_format" } ruleType: "attribute" transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } transformerArgs { key: "kH" transformerArgs { name: "targetValue" stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 2 } transformerArgs { name: "falseIndex" int64Value: 1 } transformerArgs { name: "attributeNameOfListAttribute" stringValue: "ksize" } } inputFrameworkOpName: "MaxPoolV2" } rule { ruleName: "conditionalfieldvalueintindexndarray" functionName: "conditionalfieldvalueintindexndarray" inputStringAttrName: "data_format" outputIntName: "kW" inputFloatName: "targetValue" inputFloatName: "trueIndex" inputFloatName: "falseIndex" inputFloatName: "attributeNameOfListAttribute" inputToOutput { key: "kW" value: "data_format" } ruleType: "attribute" transformerArgs { key: "kW" transformerArgs { name: "targetValue" argIndex: 1 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" argIndex: 1 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" argIndex: 1 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } transformerArgs { key: "kW" transformerArgs { name: "targetValue" argIndex: 1 stringValue: "NCHW" } transformerArgs { name: "trueIndex" int64Value: 3 argIndex: 1 } transformerArgs { name: "falseIndex" int64Value: 2 argIndex: 1 } transformerArgs { name: "attributeNameOfListAttribute" argIndex: 1 stringValue: "ksize" } } inputFrameworkOpName: "MaxPoolV2" } } mappings { frameworkName: "tensorflow" opName: "cholesky" inputFrameworkOpName: "Cholesky" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Cholesky" } } mappings { frameworkName: "tensorflow" opName: "random_crop" inputFrameworkOpName: "RandomCrop" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "image" inputTensorName: "size" outputTensorName: "input" outputTensorName: "shape" inputToOutput { key: "input" value: "image" } inputToOutput { key: "shape" value: "size" } ruleType: "tensor" inputFrameworkOpName: "RandomCrop" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "seed" outputIntName: "seed" inputToOutput { key: "seed" value: "seed" } ruleType: "attribute" inputFrameworkOpName: "RandomCrop" } } mappings { frameworkName: "tensorflow" opName: "batch_to_space_nd" inputFrameworkOpName: "BatchToSpaceND" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "crops" inputTensorName: "block_shape" outputTensorName: "input" outputTensorName: "crop" outputTensorName: "blockShape" inputToOutput { key: "input" value: "input" } inputToOutput { key: "crop" value: "crops" } inputToOutput { key: "blockShape" value: "block_shape" } ruleType: "tensor" inputFrameworkOpName: "BatchToSpaceND" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "blocks" inputToOutput { key: "blocks" value: "block_shape" } ruleType: "attribute" inputFrameworkOpName: "BatchToSpaceND" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "BatchToSpaceND" } } mappings { frameworkName: "tensorflow" opName: "reduce_mean" inputFrameworkOpName: "Mean" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Mean" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "keep_dims" outputBooleanName: "keepDims" inputToOutput { key: "keepDims" value: "keep_dims" } ruleType: "attribute" inputFrameworkOpName: "Mean" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" inputToOutput { key: "dimensions" value: "reduction_indices" } ruleType: "attribute" inputFrameworkOpName: "Mean" } } mappings { frameworkName: "tensorflow" opName: "cosh" inputFrameworkOpName: "Cosh" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Cosh" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Cosh" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Cosh" } } mappings { frameworkName: "tensorflow" opName: "identity" inputFrameworkOpName: "Variable" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" ruleType: "tensor" inputFrameworkOpName: "Variable" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Variable" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "Variable" } } mappings { frameworkName: "tensorflow" opName: "log_softmax" inputFrameworkOpName: "LogSoftmax" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "logits" outputTensorName: "input" inputToOutput { key: "input" value: "logits" } ruleType: "tensor" inputFrameworkOpName: "LogSoftmax" } } mappings { frameworkName: "tensorflow" opName: "cross" inputFrameworkOpName: "Cross" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "a" inputTensorName: "b" outputTensorName: "a" outputTensorName: "b" inputToOutput { key: "a" value: "a" } inputToOutput { key: "b" value: "b" } ruleType: "tensor" inputFrameworkOpName: "Cross" } } mappings { frameworkName: "tensorflow" opName: "matrix_set_diag" inputFrameworkOpName: "BatchMatrixSetDiag" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" inputTensorName: "diagonal" outputTensorName: "input" outputTensorName: "diagonal" inputToOutput { key: "input" value: "input" } inputToOutput { key: "diagonal" value: "diagonal" } ruleType: "tensor" inputFrameworkOpName: "BatchMatrixSetDiag" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "BatchMatrixSetDiag" } } mappings { frameworkName: "tensorflow" opName: "non_max_suppression_overlaps" inputFrameworkOpName: "NonMaxSuppressionWithOverlaps" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "scores" inputTensorName: "overlaps" outputTensorName: "scales" outputTensorName: "boxes" inputToOutput { key: "scales" value: "scores" } inputToOutput { key: "boxes" value: "overlaps" } ruleType: "tensor" inputFrameworkOpName: "NonMaxSuppressionWithOverlaps" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputIntName: "maxOutputSize" outputDoubleName: "overlapThreshold" inputToOutput { key: "maxOutputSize" value: "max_output_size" } inputToOutput { key: "overlapThreshold" value: "overlap_threshold" } inputToOutput { key: "scoreThreshold" value: "score_threshold" } ruleType: "attribute" inputFrameworkOpName: "NonMaxSuppressionWithOverlaps" } } mappings { frameworkName: "tensorflow" opName: "concat" inputFrameworkOpName: "ConcatV2" rule { ruleName: "multiinputindex" functionName: "multiinputindex" inputTensorName: "values" inputTensorName: "axis" outputTensorName: "input" outputTensorName: "concatDimension" inputToOutput { key: "input" value: "values" } inputToOutput { key: "concatDimension" value: "axis" } ruleType: "tensor" inputFrameworkOpName: "ConcatV2" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" inputToOutput { key: "concatDimension" value: "axis" } ruleType: "attribute" inputFrameworkOpName: "ConcatV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "isDynamicAxis" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "isDynamicAxis" boolValue: true argType: BOOL } } inputFrameworkOpName: "ConcatV2" } } mappings { frameworkName: "tensorflow" opName: "truncatediv" inputFrameworkOpName: "TruncateDiv" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "TruncateDiv" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "TruncateDiv" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "TruncateDiv" } } mappings { frameworkName: "tensorflow" opName: "any" inputFrameworkOpName: "Any" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "input" inputToOutput { key: "input" value: "input" } ruleType: "tensor" inputFrameworkOpName: "Any" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputBooleanName: "keep_dims" outputBooleanName: "keepDims" inputToOutput { key: "keepDims" value: "keep_dims" } ruleType: "attribute" inputFrameworkOpName: "Any" } rule { ruleName: "ndarraytointattributevalue" functionName: "ndarraytointattributevalue" outputIntName: "dimensions" inputToOutput { key: "dimensions" value: "reduction_indices" } ruleType: "attribute" inputFrameworkOpName: "Any" } } mappings { frameworkName: "tensorflow" opName: "boolean_or" inputFrameworkOpName: "LogicalOr" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "LogicalOr" } } mappings { frameworkName: "tensorflow" opName: "Reciprocal" inputFrameworkOpName: "Inv" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Inv" } } mappings { frameworkName: "tensorflow" opName: "boolean_not" inputFrameworkOpName: "LogicalNot" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "LogicalNot" } } mappings { frameworkName: "tensorflow" opName: "igammac" inputFrameworkOpName: "Igammac" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "a" inputTensorName: "x" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "a" } inputToOutput { key: "y" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Igammac" } } mappings { frameworkName: "tensorflow" opName: "extract_image_patches" inputFrameworkOpName: "ExtractImagePatches" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" outputTensorName: "input" inputToOutput { key: "input" value: "images" } ruleType: "tensor" inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "ksizeRows" inputToOutput { key: "ksizeRows" value: "ksizes" } ruleType: "attribute" transformerArgs { key: "ksizeRows" transformerArgs { name: "index" int64Value: 1 argType: INT64 } } inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "ksizeCols" inputToOutput { key: "ksizeCols" value: "ksizes" } ruleType: "attribute" transformerArgs { key: "ksizeCols" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 1 } } inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kstrideRows" inputToOutput { key: "kstrideRows" value: "strides" } ruleType: "attribute" transformerArgs { key: "kstrideRows" transformerArgs { name: "index" int64Value: 1 argType: INT64 argIndex: 2 } } inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "kstrideCols" inputToOutput { key: "kstrideCols" value: "strides" } ruleType: "attribute" transformerArgs { key: "kstrideCols" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 3 } } inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "krateRows" inputToOutput { key: "krateRows" value: "rates" } ruleType: "attribute" transformerArgs { key: "krateRows" transformerArgs { name: "index" int64Value: 1 argType: INT64 argIndex: 4 } } inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "listattributevaluelookuptoindex" functionName: "listattributevaluelookuptoindex" inputIntName: "index" outputIntName: "krateCols" inputToOutput { key: "krateCols" value: "rates" } ruleType: "attribute" transformerArgs { key: "krateCols" transformerArgs { name: "index" int64Value: 2 argType: INT64 argIndex: 5 } } inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "stringequals" functionName: "stringequals" inputStringAttrName: "padding" inputStringAttrName: "padding" outputBooleanName: "isSameMode" inputToOutput { key: "isSameMode" value: "padding" } ruleType: "attribute" transformerArgs { key: "isSameMode" transformerArgs { name: "padding" argType: STRING stringValue: "SAME" } } inputFrameworkOpName: "ExtractImagePatches" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "T" } ruleType: "attribute" inputFrameworkOpName: "ExtractImagePatches" } } mappings { frameworkName: "tensorflow" opName: "fake_quant_with_min_max_vars" inputFrameworkOpName: "FakeQuantWithMinMaxVars" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "inputs" inputTensorName: "min" inputTensorName: "max" outputTensorName: "input" outputTensorName: "min" outputTensorName: "max" inputToOutput { key: "input" value: "inputs" } inputToOutput { key: "min" value: "min" } inputToOutput { key: "max" value: "max" } ruleType: "tensor" inputFrameworkOpName: "FakeQuantWithMinMaxVars" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "num_bits" outputIntName: "numBits" inputBooleanName: "narrow_range" outputBooleanName: "narrowed" inputToOutput { key: "numBits" value: "num_bits" } inputToOutput { key: "narrowed" value: "narrow_range" } ruleType: "attribute" inputFrameworkOpName: "FakeQuantWithMinMaxVars" } } mappings { frameworkName: "tensorflow" opName: "round" inputFrameworkOpName: "Round" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Round" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Round" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Round" } } mappings { frameworkName: "tensorflow" opName: "dynamic_stitch" inputFrameworkOpName: "ParallelDynamicStitch" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "indices" outputTensorName: "index" outputTensorName: "input" inputToOutput { key: "index" value: "data" } inputToOutput { key: "input" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "ParallelDynamicStitch" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputIntName: "N" outputIntName: "numPartitions" inputToOutput { key: "numPartitions" value: "N" } ruleType: "attribute" inputFrameworkOpName: "ParallelDynamicStitch" } } mappings { frameworkName: "tensorflow" opName: "sigmoid" inputFrameworkOpName: "Sigmoid" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Sigmoid" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Sigmoid" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Sigmoid" } } mappings { frameworkName: "tensorflow" opName: "lstmBlock" inputFrameworkOpName: "BlockLSTMV2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "seq_len_max" inputTensorName: "x" inputTensorName: "cs_prev" inputTensorName: "h_prev" inputTensorName: "w" inputTensorName: "wci" inputTensorName: "wcf" inputTensorName: "wco" inputTensorName: "b" outputTensorName: "maxTSLength" outputTensorName: "input" outputTensorName: "cLast" outputTensorName: "yLast" outputTensorName: "W" outputTensorName: "Wci" outputTensorName: "Wcf" outputTensorName: "Wco" outputTensorName: "b" inputToOutput { key: "maxTSLength" value: "seq_len_max" } inputToOutput { key: "input" value: "x" } inputToOutput { key: "cLast" value: "cs_prev" } inputToOutput { key: "yLast" value: "h_prev" } inputToOutput { key: "W" value: "w" } inputToOutput { key: "Wci" value: "wci" } inputToOutput { key: "Wcf" value: "wcf" } inputToOutput { key: "Wco" value: "wco" } inputToOutput { key: "b" value: "b" } ruleType: "tensor" inputFrameworkOpName: "BlockLSTMV2" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputFloatName: "cell_clip" outputDoubleName: "clippingCellValue" inputToOutput { key: "clippingCellValue" value: "cell_clip" } ruleType: "attribute" inputFrameworkOpName: "BlockLSTMV2" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" outputIntName: "peephole" inputBooleanName: "use_peephole" inputToOutput { key: "peephole" value: "use_peephole" } ruleType: "attribute" inputFrameworkOpName: "BlockLSTMV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputFloatName: "forgetBias" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "forgetBias" doubleValue: 3.0 argType: DOUBLE } } inputFrameworkOpName: "BlockLSTMV2" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputIntName: "dataFormat" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "dataFormat" argType: INT64 } } inputFrameworkOpName: "BlockLSTMV2" } } mappings { frameworkName: "tensorflow" opName: "atan" inputFrameworkOpName: "Atan" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Atan" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Atan" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Atan" } } mappings { frameworkName: "tensorflow" opName: "ClipByValue" inputFrameworkOpName: "ClipByValue" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "t" outputTensorName: "input" inputToOutput { key: "input" value: "t" } ruleType: "tensor" inputFrameworkOpName: "ClipByValue" } rule { ruleName: "ndarrayinputtonumericalattribute" functionName: "ndarrayinputtonumericalattribute" outputDoubleName: "clipValueMin" outputDoubleName: "clipValueMax" inputToOutput { key: "clipValueMin" value: "clip_value_min" } inputToOutput { key: "clipValueMax" value: "clip_value_max" } ruleType: "attribute" inputFrameworkOpName: "ClipByValue" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "ClipByValue" } } mappings { frameworkName: "tensorflow" opName: "segment_mean" inputFrameworkOpName: "SegmentMean" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "data" inputTensorName: "segment_ids" outputTensorName: "input" outputTensorName: "idxSegments" inputToOutput { key: "input" value: "data" } inputToOutput { key: "idxSegments" value: "segment_ids" } ruleType: "tensor" inputFrameworkOpName: "SegmentMean" } } mappings { frameworkName: "tensorflow" opName: "floor" inputFrameworkOpName: "Floor" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Floor" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Floor" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Floor" } } mappings { frameworkName: "tensorflow" opName: "scatter_upd" inputFrameworkOpName: "ScatterUpdate" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "ref" inputTensorName: "updates" inputTensorName: "indices" outputTensorName: "input" outputTensorName: "updates" outputTensorName: "indices" inputToOutput { key: "input" value: "ref" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "indices" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "ScatterUpdate" } } mappings { frameworkName: "tensorflow" opName: "identity" inputFrameworkOpName: "DeepCopy" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "DeepCopy" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "DeepCopy" } } mappings { frameworkName: "tensorflow" opName: "hsv_to_rgb" inputFrameworkOpName: "HSVToRGB" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" outputTensorName: "input" inputToOutput { key: "input" value: "images" } ruleType: "tensor" inputFrameworkOpName: "HSVToRGB" } } mappings { frameworkName: "tensorflow" opName: "listdiff" inputFrameworkOpName: "ListDiff" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "values" outputTensorName: "keep" inputToOutput { key: "values" value: "x" } inputToOutput { key: "keep" value: "y" } ruleType: "tensor" inputFrameworkOpName: "ListDiff" } } mappings { frameworkName: "tensorflow" opName: "While" inputFrameworkOpName: "While" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "input" outputTensorName: "condition" inputToOutput { key: "condition" value: "input" } ruleType: "tensor" inputFrameworkOpName: "While" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "isConstant" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "isConstant" argType: BOOL } } inputFrameworkOpName: "While" } } mappings { frameworkName: "tensorflow" opName: "scatter_upd" inputFrameworkOpName: "TensorScatterUpdate" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "tensor" inputTensorName: "updates" inputTensorName: "indices" outputTensorName: "input" outputTensorName: "updates" outputTensorName: "indices" inputToOutput { key: "input" value: "tensor" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "indices" value: "indices" } ruleType: "tensor" inputFrameworkOpName: "TensorScatterUpdate" } } mappings { frameworkName: "tensorflow" opName: "scatter_sub" inputFrameworkOpName: "TensorScatterSub" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "indices" inputTensorName: "updates" inputTensorName: "tensor" outputTensorName: "indices" outputTensorName: "updates" outputTensorName: "input" inputToOutput { key: "indices" value: "indices" } inputToOutput { key: "updates" value: "updates" } inputToOutput { key: "input" value: "tensor" } ruleType: "tensor" inputFrameworkOpName: "TensorScatterSub" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "lock" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "lock" argType: BOOL } } inputFrameworkOpName: "TensorScatterSub" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "checkIndices" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "checkIndices" argType: BOOL argIndex: 1 } } inputFrameworkOpName: "TensorScatterSub" } } mappings { frameworkName: "tensorflow" opName: "cumprod" inputFrameworkOpName: "Cumprod" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "axis" outputTensorName: "input" outputTensorName: "dimensions" inputToOutput { key: "input" value: "x" } inputToOutput { key: "dimensions" value: "axis" } ruleType: "tensor" inputFrameworkOpName: "Cumprod" } rule { ruleName: "invertbooleannumber" functionName: "invertbooleannumber" inputBooleanName: "exclusive" inputBooleanName: "reverse" outputBooleanName: "exclusive" outputBooleanName: "reverse" inputToOutput { key: "exclusive" value: "exclusive" } inputToOutput { key: "reverse" value: "reverse" } ruleType: "attribute" inputFrameworkOpName: "Cumprod" } } mappings { frameworkName: "tensorflow" opName: "mergesum" inputFrameworkOpName: "AddN" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "inputs" outputTensorName: "input" inputToOutput { key: "input" value: "inputs" } ruleType: "tensor" inputFrameworkOpName: "AddN" } } mappings { frameworkName: "tensorflow" opName: "random_normal" inputFrameworkOpName: "RandomStandardNormal" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "shape" outputTensorName: "input" inputToOutput { key: "input" value: "shape" } ruleType: "tensor" inputFrameworkOpName: "RandomStandardNormal" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "dtype" outputDataTypeName: "dtype" inputToOutput { key: "dtype" value: "dtype" } ruleType: "attribute" inputFrameworkOpName: "RandomStandardNormal" } } mappings { frameworkName: "tensorflow" opName: "sign" inputFrameworkOpName: "Sign" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Sign" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Sign" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Sign" } } mappings { frameworkName: "tensorflow" opName: "greater" inputFrameworkOpName: "Greater" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" inputTensorName: "y" outputTensorName: "input" outputTensorName: "y" inputToOutput { key: "input" value: "x" } inputToOutput { key: "y" value: "y" } ruleType: "tensor" inputFrameworkOpName: "Greater" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Greater" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Greater" } } mappings { frameworkName: "tensorflow" opName: "exp" inputFrameworkOpName: "Exp" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "x" outputTensorName: "input" inputToOutput { key: "input" value: "x" } ruleType: "tensor" inputFrameworkOpName: "Exp" } rule { ruleName: "valuemapping" functionName: "valuemapping" inputDataTypeName: "T" outputDataTypeName: "dataType" inputToOutput { key: "dataType" value: "T" } ruleType: "attribute" inputFrameworkOpName: "Exp" } rule { ruleName: "argdescriptorconstant" functionName: "argdescriptorconstant" inputBooleanName: "inPlace" ruleType: "attribute" transformerArgs { key: "value" transformerArgs { name: "inPlace" argType: BOOL } } inputFrameworkOpName: "Exp" } } mappings { frameworkName: "tensorflow" opName: "adjust_contrast_v2" inputFrameworkOpName: "AdjustContrastv2" rule { ruleName: "ndarraymapping" functionName: "ndarraymapping" inputTensorName: "images" inputTensorName: "contrast_factor" outputTensorName: "input" outputTensorName: "factor" inputToOutput { key: "input" value: "images" } inputToOutput { key: "factor" value: "contrast_factor" } ruleType: "tensor" inputFrameworkOpName: "AdjustContrastv2" } }