/******************************************************************************* * Copyright (c) 2020 Konduit, K.K. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include #include #include #include "../triangular_solve.h" #include "../lup.h" #include "../solve.h" namespace sd { namespace ops { namespace helpers { template static __global__ void oneOnDiagonalKernel(T* ioBuf, Nd4jLong const* ioShape, Nd4jLong const* tadShape, Nd4jLong const* tadOffsets, Nd4jLong batchNum, Nd4jLong rowNum) { for (auto i = blockIdx.x; i < batchNum; i += gridDim.x) { auto matrixPart = ioBuf + tadOffsets[i]; for (auto j = threadIdx.x; j < rowNum; j += blockDim.x) { Nd4jLong pos[] = {j, j}; auto offset = shape::getOffset(tadShape, pos); matrixPart[offset] = T(1.f); } } } template static __global__ void restorePermutationsKernel(T* PBuf, Nd4jLong const* PShapeInfo, int const* permutationsBuf, Nd4jLong const* PTadShapeInfo, Nd4jLong const* PTadSOffsets, Nd4jLong const* permutationsTadShapeInfo, Nd4jLong const* permutationsTadOffsets, Nd4jLong batchNum, Nd4jLong rowNum) { for (auto batch = blockIdx.x; batch < batchNum; batch += gridDim.x) { auto permutations = permutationsBuf + permutationsTadOffsets[batch]; auto P = PBuf + PTadSOffsets[batch]; for (auto row = threadIdx.x; row < rowNum; row += blockDim.x) { //auto posX[] = {row}; Nd4jLong posZ[] = {row, permutations[row]}; auto zOffset = shape::getOffset(PTadShapeInfo, posZ); P[zOffset] = T(1.f); } } } template static int solveFunctor_(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool adjoint, NDArray* output) { NDArray::prepareSpecialUse({output}, {leftInput, rightInput}); // stage 1: LU decomposition batched auto leftOutput = leftInput->ulike(); auto permuShape = rightInput->getShapeAsVector(); permuShape.pop_back(); auto permutations = NDArrayFactory::create('c', permuShape, context); helpers::lu(context, leftInput, &leftOutput, &permutations); auto leftLower = leftOutput.dup(); auto rightOutput = rightInput->ulike(); auto leftLowerTad = ConstantTadHelper::getInstance()->tadForDimensions(leftLower.shapeInfo(), {-2, -1}); auto stream = context->getCudaStream(); oneOnDiagonalKernel<<<128, 256, 256, *stream>>>(leftLower.dataBuffer()->specialAsT(), leftLower.specialShapeInfo(), leftLowerTad.specialShapeInfo(), leftLowerTad.specialOffsets(), leftLowerTad.numberOfTads(), leftLower.sizeAt(-1)); auto P = leftOutput.ulike(); P.nullify(); auto PTad = ConstantTadHelper::getInstance()->tadForDimensions(P.shapeInfo(), {-2, -1}); auto permutationsTad = ConstantTadHelper::getInstance()->tadForDimensions(permutations.shapeInfo(), {-1}); restorePermutationsKernel<<<128, 256, 256, *stream>>>(P.dataBuffer()->specialAsT(), P.specialShapeInfo(), permutations.dataBuffer()->specialAsT(), PTad.specialShapeInfo(), PTad.specialOffsets(), permutationsTad.specialShapeInfo(), permutationsTad.specialOffsets(), permutationsTad.numberOfTads(), permutations.sizeAt(-1)); P.tickWriteDevice(); auto rightPart = rightInput->ulike(); MmulHelper::matmul(&P, rightInput, &rightPart, 0, 0); // stage 2: triangularSolveFunctor for Lower with given b helpers::triangularSolveFunctor(context, &leftLower, &rightPart, true, false, &rightOutput); // stage 3: triangularSolveFunctor for Upper with output of previous stage helpers::triangularSolveFunctor(context, &leftOutput, &rightOutput, false, false, output); NDArray::registerSpecialUse({output}, {leftInput, rightInput}); return Status::OK(); } int solveFunctor(sd::LaunchContext * context, NDArray* leftInput, NDArray* rightInput, bool adjoint, NDArray* output) { BUILD_SINGLE_SELECTOR(leftInput->dataType(), return solveFunctor_, (context, leftInput, rightInput, adjoint, output), FLOAT_TYPES); } template static __global__ void adjointKernel(T* output, Nd4jLong batchSize, Nd4jLong rows, Nd4jLong columns, Nd4jLong const* outputTads, Nd4jLong const* outputOffsets) { for (auto b = blockIdx.x; b < batchSize; b += gridDim.x) { auto outputPart = output + outputOffsets[b]; for (auto r = threadIdx.x; r < rows; r += blockDim.x) { for (auto c = threadIdx.y; c < r; c += blockDim.y) { Nd4jLong zPos[] = {r, c}; Nd4jLong xPos[] = {c, r}; auto zIndex = shape::getOffset(outputTads, zPos); auto xIndex = shape::getOffset(outputTads, xPos); math::nd4j_swap(outputPart[zIndex], outputPart[xIndex]); } } } } template static void adjointMatrix_(sd::LaunchContext* context, NDArray const* input, NDArray* output) { NDArray::prepareSpecialUse({output}, {input}); auto inputTads = ConstantTadHelper::getInstance()->tadForDimensions(input->shapeInfo(), {-2, -1}); auto outputTads = ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), {-2, -1}); auto stream = context->getCudaStream(); auto outputBuf = reinterpret_cast(output->specialBuffer()); auto rows = input->sizeAt(-2); auto columns = input->sizeAt(-1); output->assign(input); adjointKernel<<<128, 256, 256, *stream>>>(outputBuf, outputTads.numberOfTads(), rows, columns, outputTads.specialShapeInfo(), outputTads.specialOffsets()); NDArray::registerSpecialUse({output}, {input}); } void adjointMatrix(sd::LaunchContext* context, NDArray const* input, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), adjointMatrix_, (context, input, output), FLOAT_TYPES); } } } }