/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #include #include namespace sd { namespace ops { namespace helpers { template static void _CUDA_D rollKernelLinearStage1Dev(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); auto xEws = shape::elementWiseStride(xShapeInfo); auto zEws = shape::elementWiseStride(zShapeInfo); auto xOrder = shape::order(xShapeInfo); auto zOrder = shape::order(zShapeInfo); auto tid = threadIdx.x + blockIdx.x * blockDim.x; if (xEws > 0 && zEws > 0 && xOrder == zOrder) { for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) { int sourceIndex = fullLength - actualShift + i; auto eA = x[sourceIndex * xEws]; auto eB = x[i * xEws]; z[i * zEws] = eA; z[sourceIndex * zEws] = eB; } } else { for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) { int sourceIndex = fullLength - actualShift + i; auto xOffsetA = shape::getIndexOffset(i, xShapeInfo); auto xOffsetB = shape::getIndexOffset(sourceIndex, xShapeInfo); auto zOffsetA = shape::getIndexOffset(i, zShapeInfo); auto zOffsetB = shape::getIndexOffset(sourceIndex, zShapeInfo); auto eA = x[xOffsetA]; auto eB = x[xOffsetB]; z[zOffsetA] = eB; z[zOffsetB] = eA; } } } template static void _CUDA_G rollKernelLinearStage1(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift) { rollKernelLinearStage1Dev(vx, xShapeInfo, vz, zShapeInfo, fullLength, actualShift); } template static void _CUDA_G rollKernelLinearStage2(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift, int shiftCount) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); auto xEws = shape::elementWiseStride(xShapeInfo); auto zEws = shape::elementWiseStride(zShapeInfo); auto xOrder = shape::order(xShapeInfo); auto zOrder = shape::order(zShapeInfo); auto tid = threadIdx.x + blockIdx.x * blockDim.x; if (xEws > 0 && zEws > 0 && xOrder == zOrder) { for (int count = 1; count < shiftCount; ++count) { for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) { int destinationIndex = fullLength - (count + 1) * actualShift + i; int sourceIndex = fullLength - count * actualShift + i; auto eA = x[sourceIndex * xEws]; auto eB = x[destinationIndex * xEws]; z[destinationIndex * zEws] = eA; z[sourceIndex * zEws] = eB; } __syncthreads(); } } else { for (int count = 1; count < shiftCount; ++count) { for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) { int destinationIndex = fullLength - (count + 1) * actualShift + i; int sourceIndex = fullLength - count * actualShift + i; auto xOffsetA = shape::getIndexOffset(destinationIndex, xShapeInfo); auto xOffsetB = shape::getIndexOffset(sourceIndex, xShapeInfo); auto zOffsetA = shape::getIndexOffset(destinationIndex, zShapeInfo); auto zOffsetB = shape::getIndexOffset(sourceIndex, zShapeInfo); auto eA = x[xOffsetA]; auto eB = x[xOffsetB]; z[zOffsetA] = eB; z[zOffsetB] = eA; } __syncthreads(); } } } template static void _CUDA_G rollKernelLinearStage3(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong fullLength, int actualShift, int remainShift) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); auto xEws = shape::elementWiseStride(xShapeInfo); auto zEws = shape::elementWiseStride(zShapeInfo); auto xOrder = shape::order(xShapeInfo); auto zOrder = shape::order(zShapeInfo); auto tid = threadIdx.x + blockIdx.x * blockDim.x; if (xEws > 0 && zEws > 0 && xOrder == zOrder) { for (int i = tid ; i < actualShift; i += blockDim.x * gridDim.x) { int remainIdx = i + actualShift; int sourceIndex = remainIdx + remainShift; auto eA = x[sourceIndex * xEws]; auto eB = x[remainIdx * xEws]; z[remainIdx * zEws] = eA; z[sourceIndex * zEws] = eB; } } else { for (int i = tid; i < actualShift; i += blockDim.x * gridDim.x) { int remainIdx = i + actualShift; int sourceIndex = remainIdx + remainShift; auto xOffsetA = shape::getIndexOffset(remainIdx, xShapeInfo); auto xOffsetB = shape::getIndexOffset(sourceIndex, xShapeInfo); auto zOffsetA = shape::getIndexOffset(remainIdx, zShapeInfo); auto zOffsetB = shape::getIndexOffset(sourceIndex, zShapeInfo); auto eA = x[xOffsetA]; auto eB = x[xOffsetB]; z[zOffsetA] = eB; z[zOffsetB] = eA; } } } template static void _CUDA_D swapTadsKernel(void *vx, void *vz, const Nd4jLong *zShapeInfo, Nd4jLong tadLength) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); auto zEws = shape::elementWiseStride(zShapeInfo); auto zOrder = shape::order(zShapeInfo); auto tid = threadIdx.x + blockIdx.x * blockDim.x; if (zEws > 0) { for (int e = threadIdx.x; e < tadLength; e += blockDim.x) { auto eA = x[e * zEws]; auto eB = z[e * zEws]; x[e * zEws] = eB; z[e * zEws] = eA; } } else { for (int e = threadIdx.x; e < tadLength; e += blockDim.x) { auto zOffset = shape::getIndexOffset(e, zShapeInfo); auto eA = x[zOffset]; auto eB = z[zOffset]; x[zOffset] = eB; z[zOffset] = eA; } } } template static void _CUDA_G rollKernelFullAnyDimensionStage1(const void *vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffsets, void *vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffsets, int numTads, Nd4jLong tadLength, int dim, Nd4jLong sizeAt, int theShift) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); for (int e = blockIdx.x + theShift; e < sizeAt - theShift; e += gridDim.x) { int sourceIndex = dim * sizeAt + e - theShift; int targetIndex = dim * sizeAt + e; swapTadsKernel(z + xTadOffsets[sourceIndex], z + xTadOffsets[targetIndex], zTadShapeInfo, tadLength); } } template static void _CUDA_G rollKernelFullAnyDimensionStage2(void *vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffsets, void *vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffsets, int numTads, Nd4jLong tadLength, int dim, Nd4jLong sizeAt, int theShift) { auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); for (int e = blockIdx.x; e < theShift; e += gridDim.x) { int sourceIndex = dim * sizeAt + sizeAt - theShift + e; int targetIndex = dim * sizeAt + e; swapTadsKernel(z + zTadOffsets[sourceIndex], z + zTadOffsets[targetIndex], zTadShapeInfo, tadLength); } } template static void rollFunctorFull_(NDArray* input, NDArray* output, std::vector const& shifts, std::vector const& axes, bool inplace){ if (!inplace) output->assign(input); for (size_t i = 0; i < axes.size(); i++) { int axe = axes[i]; if (axe == input->rankOf() - 1) { // last dimension ResultSet listOfTensors = output->allTensorsAlongDimension({axe}); ResultSet listOfOutTensors = output->allTensorsAlongDimension({axe}); int fullLen = listOfTensors.size(); int theShift = shifts[i]; // if (theShift > 0) { // theShift %= fullLen; // } // else { // theShift -= fullLen * (theShift / fullLen - 1); // } for (int k = 0; k < fullLen; k++) { rollFunctorLinear(output->getContext(), listOfTensors.at(k), listOfOutTensors.at(k), theShift, true); } } else { std::vector dims(input->rankOf() - axe - 1); for (int i = 0; i < dims.size(); ++i) dims[i] = axe + 1 + i; auto packZ = ConstantTadHelper::getInstance()->tadForDimensions(output->shapeInfo(), dims); int numTads = packZ.numberOfTads(); int sizeAt = input->sizeAt(axe); auto tadLength = shape::length(packZ.primaryShapeInfo()); int theShift = shifts[i]; // if (theShift > 0) // theShift %= sizeAt; // else // theShift -= sizeAt * (theShift / sizeAt - 1); if (theShift) { for (int dim = 0; dim < numTads / sizeAt; ++dim) { rollKernelFullAnyDimensionStage1<<<1, 256, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), numTads, tadLength, dim, sizeAt, theShift); rollKernelFullAnyDimensionStage2<<<1, 256, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), output->specialBuffer(), packZ.platformShapeInfo(), packZ.platformOffsets(), numTads, tadLength, dim, sizeAt, theShift); } } } } } template static void rollFunctorLinear_(NDArray* input, NDArray* output, int shift, bool inplace){ if (!inplace) output->assign(input); auto fullLen = input->lengthOf(); int actualShift = shift; // % fullLen; // shift already non-negative then if (actualShift < 0) { actualShift -= fullLen * (actualShift / fullLen - 1); } else actualShift %= fullLen; if (actualShift) { int shiftCount = fullLen / actualShift - 1; int remainShift = fullLen % actualShift; // stage 1) swap last actualShift elements with first ones. rollKernelLinearStage1<<<1, 1, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), output->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), fullLen, actualShift); // stage 2) swap swapped actualShift elements with rest remainShiftCount times. rollKernelLinearStage2<<<1, 1, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), output->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), fullLen, actualShift, shiftCount); // FIXME: no parallelism here :( // stage 3) swap remainer of items. if (remainShift && shiftCount) rollKernelLinearStage3<<<1, 1, 1024, *(output->getContext()->getCudaStream())>>>(output->specialBuffer(), output->specialShapeInfo(), output->specialBuffer(), output->specialShapeInfo(), fullLen, actualShift, remainShift); } } void rollFunctorFull(sd::LaunchContext * context, NDArray* input, NDArray* output, std::vector const& shifts, std::vector const& axes, bool inplace){ input->syncToDevice(); BUILD_SINGLE_SELECTOR(input->dataType(), rollFunctorFull_, (input, output, shifts, axes, inplace), LIBND4J_TYPES); output->tickWriteDevice(); } void rollFunctorLinear(sd::LaunchContext * context, NDArray* input, NDArray* output, int shift, bool inplace){ input->syncToDevice(); BUILD_SINGLE_SELECTOR(input->dataType(), rollFunctorLinear_, (input, output, shift, inplace), LIBND4J_TYPES); output->tickWriteDevice(); } BUILD_SINGLE_TEMPLATE(template void rollFunctorLinear_, (NDArray* input, NDArray* output, int shift, bool inplace), LIBND4J_TYPES); BUILD_SINGLE_TEMPLATE(template void rollFunctorFull_, (NDArray* input, NDArray* output, std::vector const& shifts, std::vector const& axes, bool inplace), LIBND4J_TYPES); } } }