/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma, created on 21.09.2018 // @author raver119@gmail.com // #include #include #include namespace nd4j { namespace ops { namespace helpers { template static void ismax_(const NDArray* input, NDArray* output, const std::vector& dimensions) { if (input->isVector()) { int dimensionsLength = dimensions.size(); int length = input->lengthOf(); if (!dimensions.empty() && (input->shapeOf())[dimensions[0]] == 1) { for (int i = 0; i < length; i++) output->p(i, 1); } else { int eleStride = shape::elementWiseStride(input->getShapeInfo()); if (eleStride == 1) { int maxIdx = 0; auto currMax = input->e(0); if (length < ELEMENT_THRESHOLD) { for (int i = 0; i < length; i++) { if (currMax < input->e(i)) { currMax = input->e(i); maxIdx = i; } output->p(i, 0); } } else { { int maxIdxLocal = maxIdx; auto currMaxLocal = currMax; for (int i = 0; i < length; i++) { if (currMaxLocal < input->e(i)) { currMaxLocal = input->e(i); maxIdxLocal = i; } output->p(i, 0); } PRAGMA_OMP_CRITICAL { if (currMax < currMaxLocal) { currMax = currMaxLocal; maxIdx = maxIdxLocal; } } } } output->p(maxIdx, 1); } else { int maxIdx = 0; auto currMax = input->e(0); if (length < ELEMENT_THRESHOLD) { for (int i = 0; i < length; i++) { if (currMax < input->e(i*eleStride)) { currMax = input->e(i*eleStride); maxIdx = i; } output->p(i, 0.f); } } else { { int maxIdxLocal = maxIdx; auto currMaxLocal = currMax; for (int i = 0; i < length; i++) { if (currMaxLocal < input->e(i*eleStride)) { currMaxLocal = input->e(i*eleStride); maxIdxLocal = i; } output->p(i, 0.f); } PRAGMA_OMP_CRITICAL { if (currMax < currMaxLocal) { currMax = currMaxLocal; maxIdx = maxIdxLocal; } } } } output->p(maxIdx, 1); } } } else { int dimensionsLength = dimensions.size(); //int tads = tad.numTads; //decompose in to several sub tads after //moving all dimensions (in sorted order) //to the back. //permuted version of the input shape info for setting up the tad problem auto tadPack = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(input->getShapeInfo(), const_cast(dimensions.data()), dimensionsLength); auto tadPackZ = nd4j::ConstantTadHelper::getInstance()->tadForDimensions(output->getShapeInfo(), const_cast(dimensions.data()), dimensionsLength); auto tadShapeShapeInfo = tadPack.primaryShapeInfo(); auto tadOffsets = tadPack.primaryOffsets(); auto zOfsets = tadPackZ.platformOffsets(); int tadLength = shape::length(tadShapeShapeInfo); int tads = tadPack.numberOfTads(); int tadsPerThread = tads / TAD_THRESHOLD; int num_threads = nd4j::math::nd4j_max(1, tadsPerThread); num_threads = nd4j::math::nd4j_min(num_threads, omp_get_max_threads()); auto tadEWS = shape::elementWiseStride(tadShapeShapeInfo); auto zEWS = shape::elementWiseStride(tadPackZ.primaryShapeInfo()); int span = (tads / num_threads) + 8; PRAGMA_OMP_PARALLEL_THREADS(num_threads) { int tid = omp_get_thread_num(); int start = span * tid; int end = span * (tid + 1); if (end > tads) end = tads; for (int r = start; r < end; r++) { if (tadEWS > 0 && zEWS > 0 && dimensionsLength == 1) { auto rX = const_cast(input)->bufferAsT() + tadOffsets[r]; auto rZ = output->bufferAsT() + zOfsets[r]; auto maxValue = rX[0]; int maxIdx = 0; if (tadEWS == 1 && zEWS == 1) { for (int i = 0; i < tadLength; i++) { if (rX[i] > maxValue) { maxIdx = i; maxValue = rX[i]; } } PRAGMA_OMP_SIMD for (int i = 0; i < tadLength; i++) { rZ[i] = maxIdx == i ? (Z) 1 : (Z) 0; } } else if (tadEWS > 1 && zEWS > 1) { for (int i = 0; i < tadLength; i++) { if (rX[i * tadEWS] > maxValue) { maxIdx = i; maxValue = rX[i * tadEWS]; } } PRAGMA_OMP_SIMD for (int i = 0; i < tadLength; i++) { rZ[i * zEWS] = maxIdx == i ? (Z) 1 : (Z) 0; } } else { for (int i = 0; i < tadLength; i++) { auto xOffset = shape::getIndexOffset(i, tadShapeShapeInfo, tadLength); if (rX[xOffset] > maxValue) { maxIdx = i; maxValue = rX[xOffset]; } } PRAGMA_OMP_SIMD for (int i = 0; i < tadLength; i++) { auto zOffset = shape::getIndexOffset(i, tadPackZ.primaryShapeInfo(), tadLength); rZ[zOffset] = maxIdx == i ? (Z) 1 : (Z) 0; } } } else { int tadsPerThread = tads / TAD_THRESHOLD; int num_threads = nd4j::math::nd4j_max(1, tadsPerThread); num_threads = nd4j::math::nd4j_min(num_threads, omp_get_max_threads()); Nd4jLong offset = tadOffsets[r]; Nd4jLong shapeIter[MAX_RANK]; Nd4jLong coord[MAX_RANK]; int dim; Nd4jLong xStridesIter[MAX_RANK]; Nd4jLong resultStridesIter[MAX_RANK]; Nd4jLong *xShape = shape::shapeOf(tadShapeShapeInfo); Nd4jLong *xStride = shape::stride(tadShapeShapeInfo); Nd4jLong *resultStride = shape::stride(tadShapeShapeInfo); int rank = shape::rank(tadShapeShapeInfo); auto xPointer = const_cast(input)->bufferAsT() + offset; auto resultPointer = output->bufferAsT() + offset; auto maxValue = xPointer[0]; auto maxCursor = resultPointer; Nd4jPointer maxCursorLong = reinterpret_cast(maxCursor); if (PrepareTwoRawArrayIter(rank, xShape, xPointer, xStride, resultPointer, resultStride, &rank, shapeIter, &xPointer, xStridesIter, &resultPointer, resultStridesIter) >= 0) { ND4J_RAW_ITER_START(dim, rank, coord, shapeIter); { if (maxValue < xPointer[0]) { maxCursor = resultPointer; maxCursorLong = reinterpret_cast(resultPointer); maxValue = xPointer[0]; } resultPointer[0] = (Z) 0; } ND4J_RAW_ITER_TWO_NEXT(dim, rank, coord, shapeIter, xPointer, xStridesIter, resultPointer, resultStridesIter); maxCursor = reinterpret_cast(maxCursorLong); maxCursor[0] = (Z) 1; } } } } } } void ismax(nd4j::LaunchContext * context, const NDArray *input, NDArray *output, const std::vector& dimensions) { BUILD_DOUBLE_SELECTOR(input->dataType(), output->dataType(), ismax_, (input, output, dimensions), LIBND4J_TYPES, LIBND4J_TYPES); } } } }