/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #ifndef LIBND4J_HEADERS_NN_H #define LIBND4J_HEADERS_NN_H #include namespace nd4j { namespace ops { #if NOT_EXCLUDED(OP_softmax) DECLARE_CONFIGURABLE_OP(softmax, 1, 1, true, 0, 0); DECLARE_CONFIGURABLE_OP(softmax_bp, 2, 1, true, 0, 0); #endif /** * Local response normalization implementation as TF. * input: 4D array * * T args: * * 0: bias * 1: alpha * 2: beta * * Int arg: depth - optional local radius * * output - 4D array */ #if NOT_EXCLUDED(OP_lrn) DECLARE_CONFIGURABLE_OP(lrn, 1, 1, true, 3, 0); #endif /** * Local response normalization - backprop variant. * input: * 0 - 4D array of data * 1 - epsilon - 4D array of approximation * * T args: * * 0: bias * 1: alpha * 2: beta * * Int arg: depth - optional local radius * * output - next approximation as 4D array */ #if NOT_EXCLUDED(OP_lrn) DECLARE_CONFIGURABLE_OP(lrn_bp, 2, 1, true, 3, 0); #endif /** * Batch normalization implementation. * Reference: https://arxiv.org/abs/1502.03167v3 * * Expected arguments: * input: input array (any number of dimensions) * mean: * variance: * gamma: * beta: * * Int args: * 0: apply scale * 1: apply offset * * * T args: * 0: epsilon */ #if NOT_EXCLUDED(OP_batchnorm) DECLARE_CUSTOM_OP(batchnorm, 3, 1, false, 1, 2); #endif #if NOT_EXCLUDED(OP_batchnorm) DECLARE_CUSTOM_OP(batchnorm_new, 3, 1, false, 1, 2); #endif /** * back prop in batch normalization * * Expected arguments: * input: input array (any number of dimensions) * mean: * variance: * gamma: optional * beta: optional * dLdOut: next epsilon * * Int args: * 0: apply scale * 1: apply offset * * T args: * 0: epsilon * * output arrays: * dL/dInput * dL/dMean * dL/dVariance * dL/dGamma * dL/dBeta */ #if NOT_EXCLUDED(OP_batchnorm) DECLARE_CUSTOM_OP(batchnorm_bp, 4, 3, false, 1, 2); #endif /** * This operation updates parameters with provided gradients, wrt learning rate * Expected arguments: * x: parameters, any shape * y: gradients. same shape as x * lr: optional, learning rate * * T args: * 0: optional, learning rate */ #if NOT_EXCLUDED(OP_apply_sgd) DECLARE_CONFIGURABLE_OP(apply_sgd, 2, 1, true, -2, 0); #endif /** * This operation performs batch normalization of layer, it is based on following article http://arxiv.org/abs/1502.03167. * Expected arguments: * x: input 4D array of shape [bS,iH,iW,iD] (data format = NHWC) or [bS,iD,iH,iW] (data format = NCHW), where * bS - batch size * iH - input height * iW - input width * iD - input depth (or number of channels) * scale: 1D input array of scale factors, shape [iD] * offset: 1D input array of offsets (shifts), shape [iD] * mean: 1D input array of population mean used for inference, shape [iD], this array is required only if isTraining = false * variance: 1D input array of population mean used for inference, shape [iD], this array is required only if isTraining = false * * T input arguments: * 0: epsilon, it is optional argument, default value is 0.001, this is small number to be added to the variance of x * * integer input arguments: * 0: dataFormat, may have two values: zero -> NHWC, unity -> NCHW * 1: isTraining, may have two values: zero -> inference, unity -> training */ #if NOT_EXCLUDED(OP_fused_batch_norm) DECLARE_CUSTOM_OP(fused_batch_norm, 3, 1, false, 0, 2); #endif #if NOT_EXCLUDED(OP_log_softmax) DECLARE_CONFIGURABLE_OP(log_softmax, 1, 1, true, 0, 0); DECLARE_CONFIGURABLE_OP(log_softmax_bp, 2, 1, true, 0, 0); #endif /** * relu_layer = relu(x*w + b) */ DECLARE_CUSTOM_OP(relu_layer, 3, 1, false, 0, 0); /** * applies layer normalization to input * y = g * standardize(x) + b * * see nd4j::ops::standardize * */ #if NOT_EXCLUDED(OP_layer_norm) DECLARE_CONFIGURABLE_OP(layer_norm, 3, 1, true, 0, -2); DECLARE_CUSTOM_OP(layer_norm_bp, 4, 1, false, 0, -2); #endif /** * This operation performs dot product attention on the given timeseries input with the given queries * out = sum(similarity(k_i, q) * v_i) * * similarity(k, q) = softmax(k * q) where x * q is the dot product of x and q * * Optionally with normalization step: * similarity(k, q) = softmax(k * q / sqrt(size(q)) * * See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, p. 4, eq. 1) * * Note: This supports multiple queries at once, if only one query is available the queries vector still has to * be 3D but can have queryCount = 1 * * Note: keys and values usually is the same array. If you want to use it as the same array, simply pass it for * both. * * Expected arguments: * q: input 3D array "queries" of shape [batchSize, featureKeys, queryCount] or 4D array of shape [batchSize, numHeads, featureKeys, queryCount] * k: input 3D array "keys" of shape [batchSize, featureKeys, timesteps] or 4D array of shape [batchSize, numHeads, featureKeys, timesteps] * v: input 3D array "values" of shape [batchSize, featureValues, timesteps] or 4D array of shape [batchSize, numHeads, featureValues, timesteps] * mask: OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps] * * integer input arguments: * 0: normalization, may have two values: zero -> do not apply normalization, one -> apply normalization * 1: withWeights, may have two values: zero -> do not return weights, one -> return weights * * Output Arrays: * 0: Attention result arrays of shape [batchSize, featureValues, queryCount] or [batchSize, numHeads, featureValues, queryCount] * 1: OPTIONAL; Attention weights of shape [batchSize, timesteps, queryCount] or [batchSize, numHeads, timesteps, queryCount] */ #if NOT_EXCLUDED(OP_dot_product_attention) DECLARE_CUSTOM_OP(dot_product_attention, 3, -1, false, 0, 2); DECLARE_CUSTOM_OP(dot_product_attention_bp, 4, 3, false, 0, 1); #endif /** * This performs multi-headed dot product attention on the given timeseries input * out = concat(head_1, head_2, ..., head_n) * Wo * head_i = dot_product_attention(Wq_i*q, Wk_i*k, Wv_i*v) * * Optionally with normalization when calculating the attention for each head. * * See also "Attention is all you need" (https://arxiv.org/abs/1706.03762, pp. 4,5, "3.2.2 Multi-Head Attention") * * This makes use of dot_product_attention OP support for rank 4 inputs. * * Expected arguments: * q: input 3D array "queries" of shape [batchSize, featureKeys, queryCount] * k: input 3D array "keys" of shape [batchSize, featureKeys, timesteps] * v: input 3D array "values" of shape [batchSize, featureValues, timesteps] * Wq: input query projection weights of shape [numHeads, projectedKeys, featureKeys] * Wk: input key projection weights of shape [numHeads, projectedKeys, featureKeys] * Wv: input value projection weights of shape [numHeads, projectedValues, featureValues] * Wo: output projection weights of shape [numHeads * projectedValues, outSize] * mask: OPTIONAL; array that defines which values should be skipped of shape [batchSize, timesteps] * * integer input arguments: * 0: normalization, may have two values: zero -> do not apply normalization, one -> apply normalization * 1: withWeights, may have two values: zero -> do not return weights, one -> return weights * * Output Arrays: * 0: Attention result arrays of shape [batchSize, outSize, queryCount] * 1: OPTIONAL; Attention weights of shape [batchSize, numHeads, timesteps, queryCount] */ #if NOT_EXCLUDED(OP_multi_head_dot_product_attention) DECLARE_CUSTOM_OP(multi_head_dot_product_attention, 7, -1, false, 0, 2); DECLARE_CUSTOM_OP(multi_head_dot_product_attention_bp, 8, 7, false, 0, 1); #endif } } #endif