/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 16.04.2018 // // function nnCell implements an Elman RNN cell: output = activation(Wx*x + bx + Wh*ht + bh) #include #include namespace nd4j { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// static FORCEINLINE NDArray activation(const NDArray& arr) { return (const_cast(arr)).transform(transform::Tanh); } ////////////////////////////////////////////////////////////////////////// void rnnCell(nd4j::LaunchContext * context, const NDArray* xt, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* ht_1, NDArray* ht) { } ////////////////////////////////////////////////////////////////////////// void rnnTimeLoop(nd4j::LaunchContext * context, const NDArray* x, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* h0, const NDArray* maxTimeStep, NDArray* h, NDArray* hFinal) { } } } }