/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by george@skymind.io on 6/6/2018. // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include namespace nd4j { namespace ops { #if NOT_EXCLUDED(OP_reduce_min) ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(reduce_min, 1, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); std::vector dimensions = *block.getIArguments(); if (block.width() > 1) { auto axesVector = INPUT_VARIABLE(1); helpers::adjustAxis(input->rankOf(), axesVector, dimensions); } REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MIN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -input->shapeInfo()[0] && item < input->shapeInfo()[0], 0, "REDUCE_MIN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item); bool keepDims = false;//: false; if (block.getBArguments()->size() > 0) keepDims = B_ARG(0); else if (block.getTArguments()->size() > 0) keepDims = (bool)T_ARG(0); input->reduceAlongDimension(reduce::Min, output, dimensions, keepDims); return Status::OK(); } DECLARE_SHAPE_FN(reduce_min) { bool keepDims = false;//: false; if (block.getBArguments()->size() > 0) keepDims = B_ARG(0); else if (block.getTArguments()->size() > 0) keepDims = (bool)T_ARG(0); auto dimensions = *block.getIArguments(); if (block.width() > 1) { auto axesVector = INPUT_VARIABLE(1); helpers::adjustAxis(INPUT_VARIABLE(0)->rankOf(), axesVector, dimensions); } REQUIRE_TRUE(dimensions.size() <= inputShape->at(0)[0], 0, "REDUCE_MIN OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_MIN OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item); Nd4jLong* outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(inputShape->at(0)), dimensions, inputShape->at(0), keepDims, false, block.getWorkspace()); return SHAPELIST(outShapeInfo); } DECLARE_TYPES(reduce_min) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setSameMode(true); } #endif #if NOT_EXCLUDED(OP_reduce_min_bp) ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(reduce_min_bp, 2, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto gradO = INPUT_VARIABLE(1); auto gradI = OUTPUT_VARIABLE(0); std::vector dimensions = *block.getIArguments(); if (block.width() > 2) { auto axesVector = INPUT_VARIABLE(2); helpers::adjustAxis(input->rankOf(), axesVector, dimensions); } REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_MIN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -input->shapeInfo()[0] && item < input->shapeInfo()[0], 0, "REDUCE_MIN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item); // *** calculations *** // *gradI = 0; if(gradO->lengthOf() == 1) { auto indOfMaxElem = input->indexReduceNumber(nd4j::indexreduce::IndexMin); gradI->p(indOfMaxElem.e(0), gradO->e(0)); } else { auto indicesArr = input->applyIndexReduce(nd4j::indexreduce::IndexMin, dimensions); helpers::scatterSimple(6, *gradI, *gradO, *indicesArr, ShapeUtils::evalDimsToExclude(gradI->rankOf(), dimensions)); // 6 corresponds to copy operation delete indicesArr; } return Status::OK(); } DECLARE_SHAPE_FN(reduce_min_bp) { std::vector dimensions = *block.getIArguments(); if (block.width() > 2) { auto axesVector = INPUT_VARIABLE(2); helpers::adjustAxis(INPUT_VARIABLE(0)->rankOf(), axesVector, dimensions); } REQUIRE_TRUE(dimensions.size() <= inputShape->at(0)[0], 0, "REDUCE_MIN_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_MIN_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !", inputShape->at(0)[0], inputShape->at(0)[0], item); Nd4jLong* outShapeInfo; COPY_SHAPE(inputShape->at(0), outShapeInfo); return SHAPELIST(CONSTANT(outShapeInfo)); } DECLARE_TYPES(reduce_min_bp) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } #endif } }