/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 04.06.2018 // #include #include namespace nd4j { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(reduce_stdev, 1, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto output = OUTPUT_VARIABLE(0); bool keepDims = false;//block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false; bool biasCorrected = false;//block.getTArguments()->size() > 1 ? (bool)T_ARG(1) : false; auto dimensions = *block.getIArguments(); if (block.width() > 1) { auto axesVector = INPUT_VARIABLE(1); helpers::adjustAxis(input->rankOf(), axesVector, dimensions); } if (block.getBArguments()->size()) { keepDims = B_ARG(0); if (block.getBArguments()->size() > 1) biasCorrected = B_ARG(1); } else if (block.getTArguments()->size()) { keepDims = (bool)T_ARG(0); if (block.getTArguments()->size() > 1) biasCorrected = (bool)T_ARG(1); } REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_STDEV OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_STDEV OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item); input->varianceAlongDimension(variance::SummaryStatsStandardDeviation, output, biasCorrected, dimensions); return Status::OK(); } DECLARE_SHAPE_FN(reduce_stdev) { auto in = inputShape->at(0); auto rank = shape::rank(in); bool keepDims = false;//block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false; auto dimensions = *block.getIArguments(); if (block.width() > 1) { auto axesVector = INPUT_VARIABLE(1); helpers::adjustAxis(rank, axesVector, dimensions); } if (block.getBArguments()->size()) { keepDims = B_ARG(0); } else if (block.getTArguments()->size()) { keepDims = (bool)T_ARG(0); } REQUIRE_TRUE(dimensions.size() <= rank, 0, "REDUCE_STDEV OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_STDEV OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item); Nd4jLong* outShapeInfo = ShapeUtils::evalReduceShapeInfo(shape::order(in), dimensions, in, keepDims, false, block.getWorkspace()); return SHAPELIST(outShapeInfo); } DECLARE_TYPES(reduce_stdev) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(reduce_stdev_bp, 2, 1, false, 0, 0) { auto input = INPUT_VARIABLE(0); auto gradO = INPUT_VARIABLE(1); auto gradI = OUTPUT_VARIABLE(0); bool keepDims = false;//block.getTArguments()->size() > 0 ? (bool)T_ARG(0) : false; bool biasCorrected = false;//block.getTArguments()->size() > 1 ? (bool)T_ARG(1) : false; auto dimensions = *block.getIArguments(); if (block.width() > 2) { auto axesVector = INPUT_VARIABLE(2); helpers::adjustAxis(input->rankOf(), axesVector, dimensions); } if (block.getBArguments()->size()) { keepDims = B_ARG(0); if (block.getBArguments()->size() > 1) biasCorrected = B_ARG(1); } else if (block.getTArguments()->size()) { keepDims = (bool)T_ARG(0); if (block.getTArguments()->size() > 1) biasCorrected = (bool)T_ARG(1); } REQUIRE_TRUE(dimensions.size() <= input->rankOf(), 0, "REDUCE_STDEV_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -input->rankOf() && item < input->rankOf(), 0, "REDUCE_STDEV_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , input->rankOf(), input->rankOf(), item); const Nd4jLong N = input->lengthOf() / gradO->lengthOf(); const Nd4jLong NminusOne = biasCorrected ? N - 1 : N; auto mean = input->reduceAlongDims(reduce::Mean, dimensions, true); NDArray variance(mean.getShapeInfo(), true, block.launchContext()); // create empty array with shape matching shape of mean array input->varianceAlongDimension(variance::SummaryStatsStandardDeviation, &variance, biasCorrected, dimensions); gradI->assign( (*input - mean) / (variance * NminusOne)); // automatic broadcasting happens here if(!keepDims) { auto gradOShapeKeepDims = ShapeUtils::evalReduceShapeInfo(gradO->ordering(), dimensions, *input, true, false, block.getWorkspace()); gradO = gradO->reshape(gradO->ordering(), ShapeUtils::pullShapeFromShapeInfo(gradOShapeKeepDims)); // for example could be something like [a,b] -> [1,a,1,b] } *gradI *= *gradO; // automatic broadcasting happens here if(!keepDims) delete gradO; return Status::OK(); } DECLARE_SHAPE_FN(reduce_stdev_bp) { auto in = inputShape->at(0); auto rank = shape::rank(in); auto dimensions = *block.getIArguments(); if (block.width() > 2) { auto axesVector = INPUT_VARIABLE(2); helpers::adjustAxis(rank, axesVector, dimensions); } REQUIRE_TRUE(dimensions.size() <= rank, 0, "REDUCE_STDEV_BP OP: the number of dimensions to reduce along must be <= input array rank, but got %i instead" , dimensions.size()); for(const auto& item : dimensions) REQUIRE_TRUE(item >= -inputShape->at(0)[0] && item < inputShape->at(0)[0], 0, "REDUCE_STDEV_BP OP: the input dimension to reduce along must be in range [-%i, %i), but got %i instead !" , inputShape->at(0)[0], inputShape->at(0)[0], item); Nd4jLong* gradIshapeInfo(nullptr); COPY_SHAPE(in, gradIshapeInfo); return SHAPELIST(CONSTANT(gradIshapeInfo)); } DECLARE_TYPES(reduce_stdev_bp) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } } }