/******************************************************************************* * Copyright (c) 2015-2019 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma, created on 05.02.2018 // #include #if NOT_EXCLUDED(OP_conv3dnew) #include #include #include namespace nd4j { namespace ops { #ifdef HAVE_MKLDNN using namespace mkldnn; #endif CUSTOM_OP_IMPL(conv3dnew, 2, 1, false, 0, 13) { auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always auto bias = block.width() > 2 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto output = OUTPUT_VARIABLE(0); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW) REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM CONV3D OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM CONV3D OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf()); int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(weights->sizeAt(2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int isSameMode = INT_ARG(12); // 0-SAME, 1-VALID int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width; int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv3d(isNCDHW, *input, *output, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD); std::string expectedWeightsShape = ShapeUtils::shapeAsString({kD, kH, kW, iC, oC}); REQUIRE_TRUE(expectedWeightsShape == ShapeUtils::shapeAsString(weights), 0, "CUSTOM CONV3D OP: wrong shape of weights array, expected is %s, but got %s instead !", expectedWeightsShape.c_str(), ShapeUtils::shapeAsString(weights).c_str()); if (bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); if(isSameMode) // SAME ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW); #ifdef HAVE_MKLDNN if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, weights, bias, output})) { std::vector& streams = block.getMKLDNNStreams(); if (streams.empty()) { streams.push_back(MKLDNNStream("conv3dnew")); } if (streams[0].checkAndReset({input, weights, bias}, {output}, {}, {kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isSameMode, isNCDHW})) { mkldnn_memory_desc_t empty; mkldnn::memory::desc conv_src_md(empty), conv_weights_md(empty), conv_bias_md(empty), conv_dst_md(empty); mkldnn::memory::desc user_src_md(empty), user_weights_md(empty), user_bias_md(empty), user_dst_md(empty); mkldnn::memory::dims conv_strides, conv_padding, conv_padding_r; ConvolutionUtils::getMKLDNNMemoryDescConv3d(kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isSameMode, isNCDHW, bS, iC, iD, iH, iW, oC, oD, oH, oW, input, nullptr, weights, nullptr, bias, output, &conv_src_md, nullptr, &conv_weights_md, nullptr, &conv_bias_md, &conv_dst_md, &user_src_md, nullptr, &user_weights_md, nullptr, &user_bias_md, &user_dst_md, conv_strides, conv_padding, conv_padding_r); auto conv_desc = bias != nullptr ? convolution_forward::desc(prop_kind::forward, convolution_direct, conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md, conv_strides, conv_padding, conv_padding_r, padding_kind::zero) : convolution_forward::desc(prop_kind::forward, convolution_direct, conv_src_md, conv_weights_md, conv_dst_md, conv_strides, conv_padding, conv_padding_r, padding_kind::zero); auto engine = streams[0].getEngine(); auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, engine); auto user_src_memory = mkldnn::memory({user_src_md, engine}, const_cast(input)->buffer()); auto user_weights_memory = mkldnn::memory({user_weights_md, engine}, const_cast(weights)->buffer()); auto user_dst_memory = mkldnn::memory({user_dst_md, engine}, output->buffer()); auto conv_src_memory = user_src_memory; streams[0].addMemory(user_src_memory); if (mkldnn::memory::primitive_desc(conv_prim_desc.src_primitive_desc()) != user_src_memory.get_primitive_desc()) { conv_src_memory = mkldnn::memory(conv_prim_desc.src_primitive_desc()); streams[0].addMemory(conv_src_memory); streams[0].addOperation(reorder(user_src_memory, conv_src_memory)); } auto conv_weights_memory = user_weights_memory; streams[0].addMemory(user_weights_memory); if (mkldnn::memory::primitive_desc(conv_prim_desc.weights_primitive_desc()) != user_weights_memory.get_primitive_desc()) { conv_weights_memory = mkldnn::memory(conv_prim_desc.weights_primitive_desc()); streams[0].addMemory(conv_weights_memory); streams[0].addOperation(reorder(user_weights_memory, conv_weights_memory)); } auto conv_dst_memory = user_dst_memory; streams[0].addMemory(user_dst_memory); if (mkldnn::memory::primitive_desc(conv_prim_desc.dst_primitive_desc()) != user_dst_memory.get_primitive_desc()) { conv_dst_memory = mkldnn::memory(conv_prim_desc.dst_primitive_desc()); streams[0].addMemory(conv_dst_memory); } if (bias != nullptr) { auto conv_bias_memory = mkldnn::memory(conv_prim_desc.bias_primitive_desc(), bias->buffer()); streams[0].addMemory(conv_bias_memory); streams[0].addOperation(convolution_forward(conv_prim_desc, conv_src_memory, conv_weights_memory, conv_bias_memory, conv_dst_memory)); } else { streams[0].addOperation(convolution_forward(conv_prim_desc, conv_src_memory, conv_weights_memory, conv_dst_memory)); } if (mkldnn::memory::primitive_desc(conv_prim_desc.dst_primitive_desc()) != user_dst_memory.get_primitive_desc()) { streams[0].addOperation(reorder(conv_dst_memory, user_dst_memory)); } } streams[0].submitAndWait(); return Status::OK(); } #endif nd4j_debug("MKL-DNN is not used for conv3dnew!\n", 0); std::vector permutForOutput; if(!isNCDHW) input = input->permute({0,4,1,2,3}); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW] else permutForOutput = {0,2,3,4,1}; // [bS, oC, oD, oH, oW] -> [bS, oD, oH, oW, oC] NDArray columns(input->ordering(), {bS, iC, kD, kH, kW, oD, oH, oW}, input->dataType(), block.launchContext()); ConvolutionUtils::vol2col(block, *input, columns, sD, sH, sW, pD, pH, pW, dD, dH, dW); // [bS, iC, iD, iH, iW] is convoluted to [bS, iC, kD, kH, kW, oD, oH, oW] // [bS, iC, kD, kH, kW, oD, oH, oW] x [kD, kH, kW, iC, oC] = [bS, oD, oH, oW, oC] MmulHelper::tensorDot(&columns, weights, output, {1,2,3,4}, {3,0,1,2}, permutForOutput); if(bias) output->applyBroadcast(broadcast::Add, {indIOioC}, bias); if(!isNCDHW) delete input; return Status::OK(); } DECLARE_TYPES(conv3dnew) { getOpDescriptor() ->setAllowedInputTypes(0, nd4j::DataType::ANY) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS}) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(conv3dnew) { auto inputShapeInfo = inputShape->at(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) auto weightsShapeInfo = inputShape->at(1); // [kD, kH, kW, iC, oC] always auto biasShapeInfo = block.width() > 2 ? inputShape->at(2) : nullptr; // [oC] int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(shape::sizeAt(weightsShapeInfo, 2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID; int isNCDHW = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW const int rank = 5; REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV3D OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo); REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV3D OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo); int indIOioC, indIiD, indWoC(4); if(!isNCDHW) { indIOioC = 4; indIiD = 1; } else { indIOioC = 1; indIiD = 2; } int bS = inputShapeInfo[1]; // batch size int iD = inputShapeInfo[indIiD+1]; // input depth int iH = inputShapeInfo[indIiD+2]; // input height int iW = inputShapeInfo[indIiD+3]; // input width int iC = inputShapeInfo[indIOioC+1]; // input channels int oC = weightsShapeInfo[indWoC+1]; // output channels std::string expectedWeightsShape = ShapeUtils::shapeAsString({kD, kH, kW, iC, oC}); REQUIRE_TRUE(expectedWeightsShape == ShapeUtils::shapeAsString(weightsShapeInfo), 0, "CUSTOM CONV3D OP: wrong shape of weights array, expected is %s, but got %s instead !", expectedWeightsShape.c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str()); if (biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV3D OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); int oD, oH, oW; // output depth, height, width ConvolutionUtils::calcOutSizePool3D(oD, oH, oW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode); Nd4jLong* outputShapeInfo = nullptr; ALLOCATE(outputShapeInfo, block.getWorkspace(), shape::shapeInfoLength(inputShapeInfo), Nd4jLong); outputShapeInfo[0] = rank; outputShapeInfo[1] = bS; if (isNCDHW) { outputShapeInfo[2] = oC; outputShapeInfo[3] = oD; outputShapeInfo[4] = oH; outputShapeInfo[5] = oW; } else { outputShapeInfo[2] = oD; outputShapeInfo[3] = oH; outputShapeInfo[4] = oW; outputShapeInfo[5] = oC; } ShapeUtils::updateStridesAndType(outputShapeInfo, weightsShapeInfo, shape::order(inputShapeInfo)); return SHAPELIST(CONSTANT(outputShapeInfo)); } ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(conv3dnew_bp, 3, 2, false, 0, 13) { auto input = INPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) auto weights = INPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always auto bias = block.width() > 3 ? INPUT_VARIABLE(2) : nullptr; // [oC] auto gradO = block.width() > 3 ? INPUT_VARIABLE(3) : INPUT_VARIABLE(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next auto gradI = OUTPUT_VARIABLE(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW), epsilon auto gradW = OUTPUT_VARIABLE(1); // [kD, kH, kW, iC, oC] always auto gradB = block.width() > 3 ? OUTPUT_VARIABLE(2) : nullptr; // [oC] REQUIRE_TRUE(input->rankOf() == 5, 0, "CUSTOM CONV3D_BP OP: rank of input array must be equal to 5, but got %i instead !", input->rankOf()); REQUIRE_TRUE(weights->rankOf() == 5, 0, "CUSTOM CONV3D_BP OP: rank of weights array must be equal to 5, but got %i instead !", weights->rankOf()); REQUIRE_TRUE(gradO->rankOf() == 5, 0, "CUSTOM CONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to 5, but got %i instead !", gradO->rankOf()); int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(weights->sizeAt(0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(weights->sizeAt(1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(weights->sizeAt(2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID int isNDHWC = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW int bS, iC, iD, iH, iW, oC, oD, oH, oW; // batch size, input channels, input depth/height/width, output channels, output depth/height/width; int indIOioC, indIOioD, indWoC, indWiC, indWkD; // corresponding indexes ConvolutionUtils::getSizesAndIndexesConv3d(isNDHWC, *input, *gradO, bS, iC, iD, iH, iW, oC, oD, oH, oW, indIOioC, indIOioD, indWiC, indWoC, indWkD); int trueoD, trueoH, trueoW; // true output depth/height/width ConvolutionUtils::calcOutSizePool3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode); std::string expectedGradOShape = ShapeUtils::shapeAsString(ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIOioD,indIOioD+1,indIOioD+2})); std::string expectedWeightsShape = ShapeUtils::shapeAsString({kD, kH, kW, iC, oC}); REQUIRE_TRUE(expectedGradOShape == ShapeUtils::shapeAsString(gradO), 0, "CUSTOM CONV3D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", expectedGradOShape.c_str(), ShapeUtils::shapeAsString(gradO).c_str()); REQUIRE_TRUE(expectedWeightsShape == ShapeUtils::shapeAsString(weights), 0, "CUSTOM CONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", expectedWeightsShape.c_str(), ShapeUtils::shapeAsString(weights).c_str()); if(bias) REQUIRE_TRUE(bias->rankOf() <= 2 && oC == bias->lengthOf(), 0, "CUSTOM CONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, bias->rankOf(), bias->lengthOf()); if(isSameMode) // SAME ConvolutionUtils::calcPadding3D(pD, pH, pW, oD, oH, oW, iD, iH, iW, kD, kH, kW, sD, sH, sW, dD, dH, dW); #ifdef HAVE_MKLDNN if (block.isUseMKLDNN() && nd4j::MKLDNNStream::isSupported({input, weights, bias, gradO, gradI, gradW, gradB})) { std::vector& streams = block.getMKLDNNStreams(); if (streams.empty()) { streams.push_back(MKLDNNStream("conv3dnew_bp_weights")); streams.push_back(MKLDNNStream("conv3dnew_bp_data")); } bool resetW = streams[0].checkAndReset({input, weights, bias, gradO}, {gradI, gradW, gradB}, {}, {kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isSameMode, isNDHWC}); bool resetI = streams[1].checkAndReset({input, weights, bias, gradO}, {gradI, gradW, gradB}, {}, {kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isSameMode, isNDHWC}); if (resetW || resetI) { mkldnn_memory_desc_t empty; mkldnn::memory::desc conv_src_md(empty), conv_diff_src_md(empty), conv_weights_md(empty), conv_diff_weights_md(empty), conv_bias_md(empty), conv_dst_md(empty); mkldnn::memory::desc user_src_md(empty), user_diff_src_md(empty), user_weights_md(empty), user_diff_weights_md(empty), user_bias_md(empty), user_dst_md(empty); mkldnn::memory::dims conv_strides, conv_padding, conv_padding_r; ConvolutionUtils::getMKLDNNMemoryDescConv3d(kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, isSameMode, isNDHWC, bS, iC, iD, iH, iW, oC, oD, oH, oW, input, gradI, weights, gradW, gradB, gradO, &conv_src_md, &conv_diff_src_md, &conv_weights_md, &conv_diff_weights_md, &conv_bias_md, &conv_dst_md, &user_src_md, &user_diff_src_md, &user_weights_md, &user_diff_weights_md, &user_bias_md, &user_dst_md, conv_strides, conv_padding, conv_padding_r); auto conv_desc = gradB != nullptr ? convolution_forward::desc(prop_kind::forward, convolution_direct, conv_src_md, conv_weights_md, conv_bias_md, conv_dst_md, conv_strides, conv_padding, conv_padding_r, padding_kind::zero) : convolution_forward::desc(prop_kind::forward, convolution_direct, conv_src_md, conv_weights_md, conv_dst_md, conv_strides, conv_padding, conv_padding_r, padding_kind::zero); auto conv_prim_desc = convolution_forward::primitive_desc(conv_desc, streams[0].getEngine()); if (gradW != nullptr) { auto convW_desc = gradB != nullptr ? convolution_backward_weights::desc( convolution_direct, conv_src_md, conv_diff_weights_md, conv_bias_md, conv_dst_md, conv_strides, conv_padding, conv_padding_r, padding_kind::zero) : convolution_backward_weights::desc( convolution_direct, conv_src_md, conv_diff_weights_md, conv_dst_md, conv_strides, conv_padding, conv_padding_r, padding_kind::zero); auto engine = streams[0].getEngine(); auto convW_prim_desc = convolution_backward_weights::primitive_desc(convW_desc, engine, conv_prim_desc); auto userW_src_memory = mkldnn::memory({user_src_md, engine}, const_cast(input)->buffer()); auto userW_weights_memory = mkldnn::memory({user_diff_weights_md, engine}, gradW->buffer()); auto userW_dst_memory = mkldnn::memory({user_dst_md, engine}, const_cast(gradO)->buffer()); auto convW_src_memory = userW_src_memory; streams[0].addMemory(userW_src_memory); if (mkldnn::memory::primitive_desc(convW_prim_desc.src_primitive_desc()) != userW_src_memory.get_primitive_desc()) { convW_src_memory = mkldnn::memory(convW_prim_desc.src_primitive_desc()); streams[0].addMemory(convW_src_memory); streams[0].addOperation(reorder(userW_src_memory, convW_src_memory)); } auto convW_weights_memory = userW_weights_memory; streams[0].addMemory(userW_weights_memory); if (mkldnn::memory::primitive_desc(convW_prim_desc.diff_weights_primitive_desc()) != userW_weights_memory.get_primitive_desc()) { convW_weights_memory = mkldnn::memory(convW_prim_desc.diff_weights_primitive_desc()); streams[0].addMemory(convW_weights_memory); } auto convW_dst_memory = userW_dst_memory; streams[0].addMemory(userW_dst_memory); if (mkldnn::memory::primitive_desc(convW_prim_desc.diff_dst_primitive_desc()) != userW_dst_memory.get_primitive_desc()) { convW_dst_memory = mkldnn::memory(convW_prim_desc.diff_dst_primitive_desc()); streams[0].addMemory(convW_dst_memory); streams[0].addOperation(reorder(userW_dst_memory, convW_dst_memory)); } if (gradB != nullptr) { auto convW_bias_memory = mkldnn::memory(convW_prim_desc.diff_bias_primitive_desc(), gradB->buffer()); streams[0].addMemory(convW_bias_memory); streams[0].addOperation(convolution_backward_weights(convW_prim_desc, convW_src_memory, convW_dst_memory, convW_weights_memory, convW_bias_memory)); } else { streams[0].addOperation(convolution_backward_weights(convW_prim_desc, convW_src_memory, convW_dst_memory, convW_weights_memory)); } if (mkldnn::memory::primitive_desc(convW_prim_desc.diff_weights_primitive_desc()) != userW_weights_memory.get_primitive_desc()) { streams[0].addOperation(reorder(convW_weights_memory, userW_weights_memory)); } } if (gradI != nullptr) { auto convI_desc = convolution_backward_data::desc( convolution_direct, conv_diff_src_md, conv_weights_md, conv_dst_md, conv_strides, conv_padding, conv_padding_r, padding_kind::zero); auto engine = streams[1].getEngine(); auto convI_prim_desc = convolution_backward_data::primitive_desc(convI_desc, engine, conv_prim_desc); auto userI_src_memory = mkldnn::memory({user_diff_src_md, engine}, gradI->buffer()); auto userI_weights_memory = mkldnn::memory({user_weights_md, engine}, const_cast(weights)->buffer()); auto userI_dst_memory = mkldnn::memory({user_dst_md, engine}, const_cast(gradO)->buffer()); auto convI_src_memory = userI_src_memory; streams[1].addMemory(userI_src_memory); if (mkldnn::memory::primitive_desc(convI_prim_desc.diff_src_primitive_desc()) != userI_src_memory.get_primitive_desc()) { convI_src_memory = mkldnn::memory(convI_prim_desc.diff_src_primitive_desc()); streams[1].addMemory(convI_src_memory); } auto convI_weights_memory = userI_weights_memory; streams[1].addMemory(userI_weights_memory); if (mkldnn::memory::primitive_desc(convI_prim_desc.weights_primitive_desc()) != userI_weights_memory.get_primitive_desc()) { convI_weights_memory = mkldnn::memory(convI_prim_desc.weights_primitive_desc()); streams[1].addMemory(convI_weights_memory); streams[1].addOperation(reorder(userI_weights_memory, convI_weights_memory)); } auto convI_dst_memory = userI_dst_memory; streams[1].addMemory(userI_dst_memory); if (mkldnn::memory::primitive_desc(convI_prim_desc.diff_dst_primitive_desc()) != userI_dst_memory.get_primitive_desc()) { convI_dst_memory = mkldnn::memory(convI_prim_desc.diff_dst_primitive_desc()); streams[1].addMemory(convI_dst_memory); streams[1].addOperation(reorder(userI_dst_memory, convI_dst_memory)); } streams[1].addOperation(convolution_backward_data(convI_prim_desc, convI_dst_memory, convI_weights_memory, convI_src_memory)); if (mkldnn::memory::primitive_desc(convI_prim_desc.diff_src_primitive_desc()) != userI_src_memory.get_primitive_desc()) { streams[1].addOperation(reorder(convI_src_memory, userI_src_memory)); } } } if (gradW != nullptr) { streams[0].submitAndWait(); } if (gradI != nullptr) { streams[1].submitAndWait(); } return Status::OK(); } #endif nd4j_debug("MKL-DNN is not used for conv3dnew_bp!\n", 0); std::vector gradOaxesForDot; if(!isNDHWC) { input = input->permute({0,4,1,2,3}); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW] gradI = gradI->permute({0,4,1,2,3}); // [bS, iD, iH, iW, iC] -> [bS, iC, iD, iH, iW] gradOaxesForDot = {0,1,2,3}; // bS, oD, oH, oW } else gradOaxesForDot = {0,2,3,4}; // bS, oD, oH, oW // ----- calculation of gradW and gradB ----- // NDArray columns(input->ordering(), {bS, iC, kD, kH, kW, oD, oH, oW}, input->dataType(), block.launchContext()); ConvolutionUtils::vol2col(block, *input, columns, sD, sH, sW, pD, pH, pW, dD, dH, dW); // [bS, iC, iD, iH, iW] is convoluted to [bS, iC, kD, kH, kW, oD, oH, oW] MmulHelper::tensorDot(&columns, gradO, gradW, {0,5,6,7}, gradOaxesForDot, {3,0,1,2,4}); // [bS, iC, kD, kH, kW, oD, oH, oW] x [bS, oD, oH, oW, oC]/[bS, oC, oD, oH, oW] = [iC, kD, kH, kW, oC] if(gradB) { if(gradB->rankOf() == 2) gradB = gradB->reshape(gradB->ordering(), {(int)gradB->lengthOf()}); gradO->reduceAlongDimension(reduce::Sum, gradB, gradOaxesForDot); // sum over bS oD oH oW if(gradB != OUTPUT_VARIABLE(2)) delete gradB; } //----- calculation of gradI -----// MmulHelper::tensorDot(weights, gradO, &columns, {indWoC}, {indIOioC}, {2,3,4,1,0,5,6,7}); // [kD, kH, kW, iC, oC] x [bS, oD, oH, oW, oC]/[bS, oC, oD, oH, oW] = [kD, kH, kW, iC, bS, oD, oH, oW] ConvolutionUtils::col2vol(block, columns, *gradI, sD, sH, sW, pD, pH, pW, dD, dH, dW); // columns [bS, iC, kD, kH, kW, oD, oH, oW] is de-convoluted to [bS, iC, iD, iH, iW] if(!isNDHWC) { delete input; delete gradI; } return Status::OK(); } DECLARE_TYPES(conv3dnew_bp) { getOpDescriptor() ->setAllowedInputTypes(0, nd4j::DataType::ANY) ->setAllowedInputTypes(1, {ALL_FLOATS}) ->setAllowedInputTypes(2, {ALL_FLOATS}) ->setAllowedInputTypes(3, {ALL_FLOATS}) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(conv3dnew_bp) { Nd4jLong* inputShapeInfo = inputShape->at(0); // [bS, iD, iH, iW, iC] (NDHWC) or [bS, iC, iD, iH, iW] (NCDHW) Nd4jLong* weightsShapeInfo = inputShape->at(1); // [kD, kH, kW, iC, oC] always Nd4jLong* biasShapeInfo = block.width() > 3 ? inputShape->at(2) : nullptr; // [oC] Nd4jLong* gradOShapeInfo = block.width() > 3 ? inputShape->at(3) : inputShape->at(2); // [bS, oD, oH, oW, oC] (NDHWC) or [bS, oC, oD, oH, oW] (NCDHW), epsilon_next int kD = INT_ARG(0) > 0 ? INT_ARG(0) : static_cast(shape::sizeAt(weightsShapeInfo, 0));// filter(kernel) depth int kH = INT_ARG(1) > 0 ? INT_ARG(1) : static_cast(shape::sizeAt(weightsShapeInfo, 1));// filter(kernel) height int kW = INT_ARG(2) > 0 ? INT_ARG(2) : static_cast(shape::sizeAt(weightsShapeInfo, 2));// filter(kernel) width int sD = INT_ARG(3); // strides depth int sH = INT_ARG(4); // strides height int sW = INT_ARG(5); // strides width int pD = INT_ARG(6); // paddings depth int pH = INT_ARG(7); // paddings height int pW = INT_ARG(8); // paddings width int dD = INT_ARG(9); // dilations depth int dH = INT_ARG(10); // dilations height int dW = INT_ARG(11); // dilations width int isSameMode = INT_ARG(12); // 1-SAME, 0-VALID int isNDHWC = block.getIArguments()->size() > 13 ? !INT_ARG(13) : 1; // INT_ARG(13): 1-NDHWC, 0-NCDHW const int rank = 5; REQUIRE_TRUE(inputShapeInfo[0] == rank, 0, "CUSTOM CONV3D_BP OP: rank of input array must be equal to %i, but got %i instead !", rank, inputShapeInfo); REQUIRE_TRUE(weightsShapeInfo[0] == rank, 0, "CUSTOM CONV3D_BP OP: rank of weights array must be equal to %i, but got %i instead !", rank, weightsShapeInfo); REQUIRE_TRUE(gradOShapeInfo[0] == rank, 0, "CUSTOM CONV3D_BP OP: rank of output gradients (next epsilon) array must be equal to %i, but got %i instead !", rank, gradOShapeInfo); int indIOioC, indIiD, indWoC(4); if(!isNDHWC) { indIOioC = 4; indIiD = 1; } else { indIOioC = 1; indIiD = 2; } int bS = inputShapeInfo[1]; // batch size int iD = inputShapeInfo[indIiD+1]; // input depth int iH = inputShapeInfo[indIiD+2]; // input height int iW = inputShapeInfo[indIiD+3]; // input width int iC = inputShapeInfo[indIOioC+1]; // input channels int oC = weightsShapeInfo[indWoC+1]; // output channels int trueoD, trueoH, trueoW; // true output depth/height/width ConvolutionUtils::calcOutSizePool3D(trueoD, trueoH, trueoW, kD, kH, kW, sD, sH, sW, pD, pH, pW, dD, dH, dW, iD, iH, iW, isSameMode); std::string expectedGradOShape = ShapeUtils::shapeAsString(ShapeUtils::composeShapeUsingDimsAndIdx({bS,oC,trueoD,trueoH,trueoW, 0,indIOioC,indIiD,indIiD+1,indIiD+2})); std::string expectedWeightsShape = ShapeUtils::shapeAsString({kD, kH, kW, iC, oC}); REQUIRE_TRUE(expectedGradOShape == ShapeUtils::shapeAsString(gradOShapeInfo), 0, "CUSTOM CONV3D_BP OP: wrong shape of output gradients (next epsilon) array, expected is %s, but got %s instead !", expectedGradOShape.c_str(), ShapeUtils::shapeAsString(gradOShapeInfo).c_str()); REQUIRE_TRUE(expectedWeightsShape == ShapeUtils::shapeAsString(weightsShapeInfo), 0, "CUSTOM CONV3D_BP OP: wrong shape of weights array, expected is %s, but got %s instead !", expectedWeightsShape.c_str(), ShapeUtils::shapeAsString(weightsShapeInfo).c_str()); if(biasShapeInfo) REQUIRE_TRUE(biasShapeInfo[0] <= 2 && oC == shape::length(biasShapeInfo), 0, "CUSTOM CONV3D_BP OP: wrong shape of array with biases, expected rank, length: <=2, %i, but got %i, %i instead !", oC, biasShapeInfo[0], shape::length(biasShapeInfo)); auto gradIshapeInfo = ShapeBuilders::copyShapeInfoAndType(inputShapeInfo, gradOShapeInfo, false, block.getWorkspace()); auto gradWshapeInfo = ShapeBuilders::copyShapeInfoAndType(weightsShapeInfo, gradOShapeInfo, false, block.getWorkspace()); if(biasShapeInfo) { auto gradBshapeInfo = ShapeBuilders::copyShapeInfoAndType(biasShapeInfo, gradOShapeInfo, false, block.getWorkspace()); return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo), CONSTANT(gradBshapeInfo)); } return SHAPELIST(CONSTANT(gradIshapeInfo), CONSTANT(gradWshapeInfo)); } } } #endif