/******************************************************************************* * Copyright (c) 2015-2019 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Alex Black // #include #if NOT_EXCLUDED(OP_lstmBlockCell) #include #include namespace nd4j { namespace ops { ////////////////////////////////////////////////////////////////////////// CUSTOM_OP_IMPL(lstmBlockCell, 8, 7, false, 2, 1) { //Notation: mostly following https://arxiv.org/pdf/1503.04069.pdf auto xt = INPUT_VARIABLE(0); // input [bS, inSize] at time t auto cLast = INPUT_VARIABLE(1); // previous cell state [bS, numUnits], time t-1 auto yLast = INPUT_VARIABLE(2); // previous output [bS, numUnits], time t-1 auto W = INPUT_VARIABLE(3); // Weights - concatenated (input-to-hidden, hidden-to-hidden weights) weights, [(inSize+numUnits), 4*numUnits] auto Wci = INPUT_VARIABLE(4); // weights - cell peephole (t-1) connections to input modulation gate, [numUnits] auto Wcf = INPUT_VARIABLE(5); // weights - cell peephole (t-1) connections to forget gate, [numUnits] auto Wco = INPUT_VARIABLE(6); // weights - cell peephole (t) connections to output gate, [numUnits] auto b = INPUT_VARIABLE(7); // biases, [4*numUnits] auto i = OUTPUT_VARIABLE(0); // Output - input modulation gate activations [bS, numUnits] auto c = OUTPUT_VARIABLE(1); // Activations, cell state (pre tanh) [bs, numUnits] auto f = OUTPUT_VARIABLE(2); // Output - forget gate activations [bs, numUnits] auto o = OUTPUT_VARIABLE(3); // Output - output gate activations [bs, numUnits] auto z = OUTPUT_VARIABLE(4); // Output - input gate activations [bs, numUnits] auto h = OUTPUT_VARIABLE(5); // Cell state, post tanh [bs, numUnits] auto y = OUTPUT_VARIABLE(6); // current cell output [bS, numProj], time t const int peephole = INT_ARG(0); // if 1, provide peephole connections const double forgetBias = T_ARG(0); const double clippingCellValue = T_ARG(1); // clipping value for ct, if it is not equal to zero, then cell state is clipped REQUIRE_TRUE(xt->rankOf()==2 && cLast->rankOf()==2 && yLast->rankOf()==2, 0, "lstmBlockCell: Input ranks must be 2 for inputs 0/1/2 (x, cLast, outLast) - got %i, %i, %i", xt->rankOf(), cLast->rankOf(), yLast->rankOf()); const int rank = xt->rankOf(); const int bS = xt->sizeAt(0); const int inSize = xt->sizeAt(1); const int numUnits = cLast->sizeAt(1); REQUIRE_TRUE(xt->sizeAt(0) == yLast->sizeAt(0) && xt->sizeAt(0) == cLast->sizeAt(0), 0, "lstmBlockCell: Input minibatch sizes (dimension 0) must be same for xt, cLast, yLast"); REQUIRE_TRUE(W->rankOf()==2, 0, "lstmBlockCell: Weights array rank must be 2"); REQUIRE_TRUE(W->sizeAt(0)==(inSize+numUnits), 0, "lstmBlockCell: Weights size(0) must be equal to inSize + numUnits, got %i", W->sizeAt(0)); REQUIRE_TRUE(W->sizeAt(1)==(4*numUnits), 0, "lstmBlockCell: Weights size(1) must be equal to 4*numUnits, got %i", W->sizeAt(1)); REQUIRE_TRUE(b->rankOf()==1 && b->sizeAt(0)==(4*numUnits), 0, "lstmBlockCell: Biases must be rank 1, size 4*numUnits"); REQUIRE_TRUE(i->rankOf()==2 && c->rankOf()==2 && f->rankOf()==2 && o->rankOf()==2 && z->rankOf()==2 && h->rankOf()==2 && y->rankOf()==2 && i->sizeAt(0)==bS && c->sizeAt(0)==bS && f->sizeAt(0)==bS && o->sizeAt(0)==bS && z->sizeAt(0)==bS && h->sizeAt(0)==bS && y->sizeAt(0)==bS && i->sizeAt(1)==numUnits && c->sizeAt(1)==numUnits && f->sizeAt(1)==numUnits && o->sizeAt(1)==numUnits && z->sizeAt(1)==numUnits && h->sizeAt(1)==numUnits && y->sizeAt(1)==numUnits, 0, "lstmBlockCell: Output arrays must all be rank 2 with size(0) == batchSize and size(1) == numUnits"); // calculations helpers::lstmBlockCell(xt, cLast, yLast, W, Wci, Wcf, Wco, b, i, c, f, o, z, h, y, {(double)peephole, forgetBias, clippingCellValue}); return Status::OK(); } DECLARE_TYPES(lstmBlockCell) { getOpDescriptor() ->setAllowedInputTypes(nd4j::DataType::ANY) ->setAllowedOutputTypes({ALL_FLOATS}); } DECLARE_SHAPE_FN(lstmBlockCell) { auto xt = inputShape->at(0); // input [bS, inSize] at time t auto cLast = inputShape->at(1); // previous cell state [bS, numUnits], time t-1 auto yLast = inputShape->at(2); // previous output [bS, numUnits], time t-1 auto W = inputShape->at(3); // Weights - concatenated (input-to-hidden, hidden-to-hidden weights) weights, [(inSize+numUnits), 4*numUnits] auto Wci = inputShape->at(4); // weights - cell peephole (t-1) connections to input modulation gate, [numUnits] auto Wcf = inputShape->at(5); // weights - cell peephole (t-1) connections to forget gate, [numUnits] auto Wco = inputShape->at(6); // weights - cell peephole (t) connections to output gate, [numUnits] auto b = inputShape->at(7); // biases, [4*numUnits] REQUIRE_TRUE(shape::rank(xt)==2 && shape::rank(cLast)==2 && shape::rank(yLast)==2, 0, "lstmBlockCell: Input ranks must be 2 for inputs 0/1/2 (x, cLast, outLast) - got %i, %i, %i", shape::rank(xt), shape::rank(cLast), shape::rank(yLast)); const int inSize = xt[2]; const int numUnits = cLast[2]; //[rank, bS, nOut, ...] REQUIRE_TRUE(xt[1] == yLast[1] && xt[1] == cLast[1], 0, "lstmBlockCell: Input minibatch sizes (dimension 0) must be same for xt, cLast, yLast"); REQUIRE_TRUE(shape::rank(W)==2, 0, "lstmBlockCell: Weights array rank must be rank 2, got %i", shape::rank(W)); REQUIRE_TRUE(W[1]==(inSize+numUnits), 0, "lstmBlockCell: Weights size(0) must be equal to inSize + numUnits, got %i", W[1]); REQUIRE_TRUE(W[2]==(4*numUnits), 0, "lstmBlockCell: Weights size(1) must be equal to 4*numUnits, got %i", W[2]); REQUIRE_TRUE(shape::rank(b)==1 && b[1]==(4*numUnits), 0, "lstmBlockCell: Biases must be rank 1, size 4*numUnits"); // evaluate output shapeInfos const int bS = xt[1]; Nd4jLong *s(nullptr); ALLOCATE(s, block.getWorkspace(), shape::shapeInfoLength(2), Nd4jLong); // [bS, numUnits] s[0] = 2; s[1] = bS; s[2] = numUnits; ShapeUtils::updateStridesAndType(s, xt, 'c'); Nd4jLong *s1 = CONSTANT(s); //7 outputs, all same shape: z, i, f, o, h, c, y return SHAPELIST(s1, s1, s1, s1, s1, s1, s1); } } } #endif