/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by Yurii Shyrma on 18.12.2017 // #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// BiDiagonalUp::BiDiagonalUp(const NDArray& matrix): _HHmatrix(NDArray(matrix.ordering(), {matrix.sizeAt(0), matrix.sizeAt(1)}, matrix.dataType(), matrix.getContext())), _HHbidiag(NDArray(matrix.ordering(), {matrix.sizeAt(1), matrix.sizeAt(1)}, matrix.dataType(), matrix.getContext())) { // input validation if(matrix.rankOf() != 2 || matrix.isScalar()) throw std::runtime_error("ops::helpers::biDiagonalizeUp constructor: input array must be 2D matrix !"); _HHmatrix.assign(&matrix); _HHbidiag.assign(0.); evalData(); } template void BiDiagonalUp::_evalData() { const auto rows = _HHmatrix.sizeAt(0); const auto cols = _HHmatrix.sizeAt(1); if(rows < cols) throw std::runtime_error("ops::helpers::BiDiagonalizeUp::evalData method: this procedure is applicable only for input matrix with rows >= cols !"); T coeff, normX; T x, y; for(Nd4jLong i = 0; i < cols-1; ++i ) { // evaluate Householder matrix nullifying columns NDArray column1 = _HHmatrix({i,rows, i,i+1}); x = _HHmatrix.t(i,i); y = _HHbidiag.t(i,i); Householder::evalHHmatrixDataI(column1, x, y); _HHmatrix.r(i, i) = x; _HHbidiag.r(i, i) = y; // multiply corresponding matrix block on householder matrix from the left: P * bottomRightCorner NDArray bottomRightCorner1 = _HHmatrix({i,rows, i+1,cols}, true); // {i, cols} Householder::mulLeft(bottomRightCorner1, _HHmatrix({i+1,rows, i,i+1}, true), _HHmatrix.t(i,i)); if(i == cols-2) continue; // do not apply right multiplying at last iteration // evaluate Householder matrix nullifying rows NDArray row1 = _HHmatrix({i,i+1, i+1,cols}); x = _HHmatrix.t(i,i+1); y = _HHbidiag.t(i,i+1); Householder::evalHHmatrixDataI(row1, x, y); _HHmatrix.r(i, i+1) = x; _HHbidiag.r(i, i+1) = y; // multiply corresponding matrix block on householder matrix from the right: bottomRightCorner * P NDArray bottomRightCorner2 = _HHmatrix({i+1,rows, i+1,cols}, true); // {i, rows} Householder::mulRight(bottomRightCorner2, _HHmatrix({i,i+1, i+2,cols}, true), _HHmatrix.t(i,i+1)); } NDArray row2 =_HHmatrix({cols-2,cols-1, cols-1,cols}); x = _HHmatrix.t(cols-2,cols-1); y = _HHbidiag.t(cols-2,cols-1); Householder::evalHHmatrixDataI(row2, x, y); _HHmatrix.r(cols-2,cols-1) = x; _HHbidiag.r(cols-2,cols-1) = y; NDArray column2 = _HHmatrix({cols-1,rows, cols-1,cols}); x = _HHmatrix.t(cols-1,cols-1); y = _HHbidiag.t(cols-1,cols-1); Householder::evalHHmatrixDataI(column2, x, y); _HHmatrix.r(cols-1, cols-1) = x; _HHbidiag.r(cols-1, cols-1) = y; } ////////////////////////////////////////////////////////////////////////// void BiDiagonalUp::evalData() { auto xType = _HHmatrix.dataType(); BUILD_SINGLE_SELECTOR(xType, _evalData, ();, FLOAT_TYPES); } ////////////////////////////////////////////////////////////////////////// template HHsequence BiDiagonalUp::makeHHsequence_(const char type) { const int diagSize = type == 'u' ? _HHbidiag.sizeAt(0) : _HHbidiag.sizeAt(0) - 1; _hhCoeffs = NDArray(_HHmatrix.ordering(), {diagSize}, _HHmatrix.dataType(), _HHmatrix.getContext()); if(type == 'u') for(int i = 0; i < diagSize; ++i) _hhCoeffs.r(i) = _HHmatrix.t(i,i); else for(int i = 0; i < diagSize; ++i) _hhCoeffs.r(i) = _HHmatrix.t(i,i+1); HHsequence result(_HHmatrix, _hhCoeffs, type); if(type != 'u') { result._diagSize = diagSize; result._shift = 1; } return result; } ////////////////////////////////////////////////////////////////////////// HHsequence BiDiagonalUp::makeHHsequence(const char type) { auto xType = _HHmatrix.dataType(); BUILD_SINGLE_SELECTOR(xType, return makeHHsequence_, (type);, FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void BiDiagonalUp::_evalData, (), FLOAT_TYPES); BUILD_SINGLE_TEMPLATE(template HHsequence BiDiagonalUp::makeHHsequence_, (const char type), FLOAT_TYPES); } } }