/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by raver119 on 16.10.2017. // #include #include #include #include #include #include namespace sd { namespace ops { LegacyReduceSameOp::LegacyReduceSameOp() : LegacyOp::LegacyOp(1) { // } LegacyReduceSameOp::LegacyReduceSameOp(int opNum) : LegacyOp::LegacyOp(1, opNum) { //this->_opNum = opNum; } LegacyOp* LegacyReduceSameOp::clone() { return new LegacyReduceSameOp(this->_opNum); } Nd4jStatus LegacyReduceSameOp::validateAndExecute(Context &block) { auto x = INPUT_VARIABLE(0); auto z = OUTPUT_VARIABLE(0); NDArray::prepareSpecialUse({z}, {x}); int opNum = block.opNum() < 0 ? this->_opNum : block.opNum(); nd4j_debug("Executing LegacyReduceSameOp: [%i]\n", opNum); auto axis = *block.getAxis(); bool allAxes = false; ExtraArguments extras(*block.getTArguments()); PointersManager manager(block.launchContext(), "LegacyReduceSameOp"); if (block.width() == 1) { if (axis.size() == x->rankOf()) allAxes = true; if (axis.empty() || allAxes) { // scalar NativeOpExecutioner::execReduceSameScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo()); } else { // TAD std::vector dims(axis); for (int e = 0; e < dims.size(); e++) if (dims[e] < 0) dims[e] += x->rankOf(); REQUIRE_TRUE(dims.size() > 0, 0, "Some dimensions required for reduction!"); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), dims); auto pTadShape = Environment::getInstance().isCPU() ? packX.primaryShapeInfo() : packX.specialShapeInfo(); //(Nd4jLong *) manager.replicatePointer(tad.tadOnlyShapeInfo, shape::shapeInfoByteLength(tad.tadOnlyShapeInfo)); auto pTadOffsets = Environment::getInstance().isCPU() ? packX.primaryOffsets() : packX.specialOffsets(); //(Nd4jLong *) manager.replicatePointer(tad.tadOffsets, tad.numTads * sizeof(Nd4jLong)); NativeOpExecutioner::execReduceSame(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), dims.data(), (int) dims.size(), pTadShape, pTadOffsets); } STORE_RESULT(*z); } else { auto indices = INPUT_VARIABLE(1); if (indices->lengthOf() == x->rankOf()) allAxes = true; //indices->printIndexedBuffer("indices"); std::vector dims(indices->lengthOf()); for (int e = 0; e < indices->lengthOf(); e++) { // lol otherwise we segfault on macOS int f = indices->e(e); dims[e] = f >= 0 ? f : f += x->rankOf(); } if ((block.getIArguments()->size() == 1 && INT_ARG(0) == sd::DataTypeUtils::max()) || allAxes) { // scalar NativeOpExecutioner::execReduceSameScalar(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo()); } else { // TAD REQUIRE_TRUE(dims.size() > 0, 0, "Some dimensions required for reduction!"); auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(x->shapeInfo(), dims); auto pTadShape = Environment::getInstance().isCPU() ? packX.primaryShapeInfo() : packX.specialShapeInfo(); //(Nd4jLong *) manager.replicatePointer(tad.tadOnlyShapeInfo, shape::shapeInfoByteLength(tad.tadOnlyShapeInfo)); auto pTadOffsets = Environment::getInstance().isCPU() ? packX.primaryOffsets() : packX.specialOffsets(); //(Nd4jLong *) manager.replicatePointer(tad.tadOffsets, tad.numTads * sizeof(Nd4jLong)); NativeOpExecutioner::execReduceSame(block.launchContext(), opNum, x->buffer(), x->shapeInfo(), x->specialBuffer(), x->specialShapeInfo(), extras.argumentsAsT(z->dataType()), z->buffer(), z->shapeInfo(), z->specialBuffer(), z->specialShapeInfo(), dims.data(), (int) dims.size(), pTadShape, pTadOffsets); } } manager.synchronize(); return Status::OK(); } /** * For all reductions rules are simple: either you return scalar, or you return reduced NDArray. * It solely depends on input shape, and requested dimensions */ ShapeList *LegacyReduceSameOp::calculateOutputShape(ShapeList *inputShape, sd::graph::Context &block) { auto inShape = inputShape->at(0); bool allAxes = false; auto keepDims = block.numB() > 0 ? B_ARG(0) : false; auto newFormat = block.numB() > 1 ? B_ARG(1) : true; auto axis = block.width() > 1 ? INPUT_VARIABLE(1)->asVectorT() : *block.getAxis(); if (axis.size() == shape::rank(inShape)) allAxes = true; // in this case we're building proper shape for reduction auto newShape = ShapeUtils::evalReduceShapeInfo(shape::order(inShape), axis, inShape, keepDims, !newFormat, block.workspace()); return SHAPELIST(newShape); } } }