/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 19.04.2018 // @author raver119@gmail.com // #include #include #include #include #include #include namespace sd { namespace ops { namespace helpers { /////////////////////////////////////////////////////////////////// template __global__ void preluCuda(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz) { const auto x = reinterpret_cast(vx); const auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); __shared__ Nd4jLong xzLen; __shared__ int xzRank, yRank; if (threadIdx.x == 0) { xzLen = shape::length(xShapeInfo); xzRank = shape::rank(xShapeInfo); yRank = shape::rank(yShapeInfo); } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; int coords[MAX_RANK]; for (int i = tid; i < xzLen; i += blockDim.x * gridDim.x) { shape::index2coords(i, xShapeInfo, coords); const auto xzOffset = shape::getOffset(xShapeInfo, coords); const auto xVal = x[xzOffset]; if(xVal < 0) { for (uint j = 0; j < yRank; ++j) if(yShapeInfo[j + 1] == 1) coords[j + 1] = 0; z[xzOffset] = xVal * y[shape::getOffset(yShapeInfo, coords + 1)]; } else z[xzOffset] = xVal; } } /////////////////////////////////////////////////////////////////// template linkage void preluCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz) { preluCuda<<>>(vx, xShapeInfo, vy, yShapeInfo, vz); } /////////////////////////////////////////////////////////////////// void prelu(sd::LaunchContext * context, const NDArray& input, const NDArray& alpha, NDArray& output) { PointersManager manager(context, "prelu"); const int threadsPerBlock = 256; const int blocksPerGrid = 512; const int sharedMem = 512; const auto xType = input.dataType(); const auto yType = alpha.dataType(); NDArray::prepareSpecialUse({&output}, {&input, &alpha}); BUILD_SINGLE_SELECTOR_TWICE(xType, preluCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), alpha.specialBuffer(), alpha.specialShapeInfo(), output.specialBuffer()), FLOAT_TYPES); NDArray::registerSpecialUse({&output}, {&input, &alpha}); manager.synchronize(); } /////////////////////////////////////////////////////////////////// template __global__ linkage void preluBPCuda(const void *vIn, const Nd4jLong *inShapeInfo, const void *vAlpha, const Nd4jLong *alphaShapeInfo, const void *vdLdO, const Nd4jLong *dLdOShapeInfo, void *vdLdI, const Nd4jLong *dLdIShapeInfo, void *vdLdA, const Nd4jLong *dLdAShapeInfo) { const auto in = reinterpret_cast(vIn); const auto alpha = reinterpret_cast(vAlpha); const auto dLdO = reinterpret_cast(vdLdO); auto dLdI = reinterpret_cast(vdLdI); auto dLdA = reinterpret_cast(vdLdA); __shared__ Nd4jLong inLen, totalThreads; __shared__ int inRank, alphaRank; if (threadIdx.x == 0) { inLen = shape::length(inShapeInfo); totalThreads = gridDim.x * blockDim.x; inRank = shape::rank(inShapeInfo); alphaRank = shape::rank(alphaShapeInfo); } __syncthreads(); const auto tid = blockIdx.x * blockDim.x + threadIdx.x; int coords[MAX_RANK]; for (int i = tid; i < inLen; i += totalThreads) { shape::index2coords(i, inShapeInfo, coords); const auto inOffset = shape::getOffset(inShapeInfo, coords); const auto dLdOOffset = shape::getOffset(dLdOShapeInfo, coords); const auto dLdIOffset = shape::getOffset(dLdIShapeInfo, coords); const auto xVal = in[inOffset]; const auto grO = dLdO[dLdOOffset]; if(xVal < 0) { for (uint j = 0; j < alphaRank; ++j) if(alphaShapeInfo[j + 1] == 1) coords[j + 1] = 0; const auto alphaOffset = shape::getOffset(alphaShapeInfo, coords + 1); const auto dLdAOffset = shape::getOffset(dLdAShapeInfo, coords + 1); dLdI[dLdIOffset] = grO * alpha[alphaOffset]; sd::math::atomics::nd4j_atomicAdd(&dLdA[dLdAOffset], static_cast(grO * xVal)); } else dLdI[dLdIOffset] = grO; } } ////////////////////////////////////////////////////////////////////////// template __host__ linkage void preluBPCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void *vIn, const Nd4jLong *inShapeInfo, const void *vAlpha, const Nd4jLong *alphaShapeInfo, const void *vdLdO, const Nd4jLong *dLdOShapeInfo, void *vdLdI, const Nd4jLong *dLdIShapeInfo, void *vdLdA, const Nd4jLong *dLdAShapeInfo) { preluBPCuda<<>>(vIn, inShapeInfo, vAlpha, alphaShapeInfo, vdLdO, dLdOShapeInfo, vdLdI, dLdIShapeInfo, vdLdA, dLdAShapeInfo); } ////////////////////////////////////////////////////////////////////////// void preluBP(sd::LaunchContext* context, const NDArray& input, const NDArray& alpha, const NDArray& dLdO, NDArray& dLdI, NDArray& dLdA) { dLdA.nullify(); PointersManager manager(context, "preluBP"); const int threadsPerBlock = 256; const int blocksPerGrid = 512; const int sharedMem = 512; const auto xType = input.dataType(); const auto zType = alpha.dataType(); NDArray::prepareSpecialUse({&dLdI, &dLdA}, {&input, &alpha, &dLdO}); BUILD_SINGLE_SELECTOR_TWICE(xType, preluBPCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), alpha.specialBuffer(), alpha.specialShapeInfo(), dLdO.specialBuffer(), dLdO.specialShapeInfo(), dLdI.specialBuffer(), dLdI.specialShapeInfo(), dLdA.specialBuffer(), dLdA.specialShapeInfo()), FLOAT_TYPES); NDArray::registerSpecialUse({&dLdI, &dLdA}, {&input, &alpha, &dLdO}); manager.synchronize(); } /////////////////////////////////////////////////////////////////// template __device__ void softMaxForVectorCuda(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { // logic of this kernel is based on assumption gridDim = 1 const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ Nd4jLong len; __shared__ int numOfIters; __shared__ T* shmem; if (threadIdx.x == 0) { extern __shared__ char shared[]; shmem = reinterpret_cast(shared); len = shape::length(xShapeInfo); numOfIters = (len + blockDim.x - 1) / blockDim.x; // ceil (len / blockDim.x) } __syncthreads(); T temp = -DataTypeUtils::max(); // set start value to compare with at first iteration, FIXME: what if T is unsigned ?? // ************ evaluate max element in input array x ************ // for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx < len) { const Nd4jLong xOffset = shape::getIndexOffset(elemIdx, xShapeInfo); shmem[threadIdx.x] = (threadIdx.x != 0) ? x[xOffset] : sd::math::nd4j_max(x[xOffset], temp); // take into account max element evaluated on previous iteration and stored in temp } else shmem[threadIdx.x] = -DataTypeUtils::max(); // FIXME: what if T is unsigned ?? __syncthreads(); for (int s = blockDim.x / 2; s > 0; s /= 2) { if(threadIdx.x < s) shmem[threadIdx.x] = sd::math::nd4j_max(shmem[threadIdx.x], shmem[threadIdx.x + s]); __syncthreads(); } temp = shmem[0]; // save max value calculated at current iteration } const T max = temp; temp = 0; // ************ evaluate value of exp(x[offset] - max) per each element, store it to shared memory shmem ************ // // at the same evaluate sum of exponents, sum will be stored in shmem[0] for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx < len) { const Nd4jLong xOffset = shape::getIndexOffset(elemIdx, xShapeInfo); const Nd4jLong zOffset = shape::getIndexOffset(elemIdx, zShapeInfo); z[zOffset] = sd::math::nd4j_exp(x[xOffset] - max); shmem[threadIdx.x] = (threadIdx.x != 0) ? z[zOffset] : (z[zOffset] + temp); // take into account sum element evaluated on previous iteration and stored in temp } else shmem[threadIdx.x] = 0; __syncthreads(); for (int s = blockDim.x / 2; s > 0; s /= 2) { if(threadIdx.x < s) shmem[threadIdx.x] += shmem[threadIdx.x + s]; __syncthreads(); } temp = shmem[0]; // save sum calculated at current iteration } // ************ evaluate z[offset] / sum ************ // for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx >= len) continue; const Nd4jLong zOffset = shape::getIndexOffset(elemIdx, zShapeInfo); z[zOffset] /= shmem[0]; } } template __global__ void softMaxForVectorCudaGlobal(const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { softMaxForVectorCuda(vx, xShapeInfo, vz, zShapeInfo); } /////////////////////////////////////////////////////////////////// template linkage void softMaxForVectorCudaLauncher(const cudaStream_t* stream, const void *vx, const Nd4jLong *xShapeInfo, void *vz, const Nd4jLong *zShapeInfo) { softMaxForVectorCudaGlobal<<<1, MAX_NUM_THREADS / 4 , (MAX_NUM_THREADS / 4) * sizeof(T) + 512, *stream>>>(vx, xShapeInfo, vz, zShapeInfo); } /////////////////////////////////////////////////////////////////// template __global__ static void softMaxCuda(const void* vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets, void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets) { const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); const auto* xTad = x + xOffsets[blockIdx.x]; auto* zTad = z + zOffsets[blockIdx.x]; softMaxForVectorCuda(xTad, xTadShapeInfo, zTad, zTadShapeInfo); } /////////////////////////////////////////////////////////////////// template static void softMaxCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xOffsets, void* vz, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zOffsets) { softMaxCuda<<>>(vx, xTadShapeInfo, xOffsets, vz, zTadShapeInfo, zOffsets); } ////////////////////////////////////////////////////////////////////////// void softmax(sd::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) { if(!input.isActualOnDeviceSide()) input.syncToDevice(); const int rank = input.rankOf(); PointersManager manager(context, "helpers::softmax"); if(input.isVector()) { if(rank == 1 || input.sizeAt(dimension) != 1) { NDArray::prepareSpecialUse({&output}, {&input}); BUILD_SINGLE_SELECTOR(input.dataType(), softMaxForVectorCudaLauncher, (context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo()), FLOAT_TYPES); NDArray::registerSpecialUse({&output}, {&input}); } else output = 1.; } else { auto packX = sd::ConstantTadHelper::getInstance().tadForDimensions(input.shapeInfo(), {dimension}); auto packZ = sd::ConstantTadHelper::getInstance().tadForDimensions(output.shapeInfo(), {dimension}); const int threadsPerBlock = MAX_NUM_THREADS / 4; const int blocksPerGrid = packZ.numberOfTads(); const int sharedMem = input.sizeOfT() * threadsPerBlock + 512; NDArray::prepareSpecialUse({&output}, {&input}); BUILD_SINGLE_SELECTOR(input.dataType(), softMaxCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, context->getCudaStream(), input.specialBuffer(), packX.specialShapeInfo(), packX.specialOffsets(), output.specialBuffer(), packZ.specialShapeInfo(), packZ.specialOffsets()), FLOAT_TYPES); NDArray::registerSpecialUse({&output}, {&input}); // auto maxAlongDim = const_cast(input).reduceAlongDimension(reduce::Max, {dimension}, true); // (input - maxAlongDim).applyTransform(transform::Exp, &output); // output contains exponents temporarily // auto sumAlongDim = output.reduceAlongDimension(reduce::Sum, {dimension}, true); // output /= sumAlongDim; // input.tickReadDevice(); } manager.synchronize(); output.tickWriteDevice(); } /////////////////////////////////////////////////////////////////// template __global__ void logSoftMaxForVectorCuda(const void *vx, const Nd4jLong *xzShapeInfo, void *vz) { // logic of this kernel is based on assumption gridDim = 1 const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ Nd4jLong len; __shared__ int numOfIters; __shared__ T* shmem; if (threadIdx.x == 0) { extern __shared__ char shared[]; shmem = reinterpret_cast(shared); len = shape::length(xzShapeInfo); numOfIters = (len + blockDim.x - 1) / blockDim.x; // ceil (len / blockDim.x) } __syncthreads(); T temp = -DataTypeUtils::max(); // set start value to compare with at first iteration, FIXME: what if T is unsigned ?? // ************ evaluate max element in input array x ************ // for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx < len) { const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo); shmem[threadIdx.x] = (threadIdx.x != 0) ? x[offset] : sd::math::nd4j_max(x[offset], temp); // take into account max element evaluated on previous iteration and stored in temp } else shmem[threadIdx.x] = -DataTypeUtils::max(); // FIXME: what if T is unsigned ?? __syncthreads(); for (int s = blockDim.x / 2; s > 0; s /= 2) { if(threadIdx.x < s) shmem[threadIdx.x] = sd::math::nd4j_max(shmem[threadIdx.x], shmem[threadIdx.x + s]); __syncthreads(); } temp = shmem[0]; // save max value calculated at current iteration } const T max = temp; temp = 0; // ************ evaluate value of exp(x[offset] - max) per each element, store it to shared memory shmem ************ // // at the same time evaluate sum of exponents, sum will be stored in shmem[0] for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx < len) { const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo); z[offset] = sd::math::nd4j_exp(x[offset] - max); shmem[threadIdx.x] = (threadIdx.x != 0) ? z[offset] : (z[offset] + temp); // take into account sum element evaluated on previous iteration and stored in temp } else shmem[threadIdx.x] = 0; __syncthreads(); for (int s = blockDim.x / 2; s > 0; s /= 2) { if(threadIdx.x < s) shmem[threadIdx.x] += shmem[threadIdx.x + s]; __syncthreads(); } temp = shmem[0]; // save sum calculated at current iteration } // ************ evaluate log(z[offset] / sum) ************ // for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx >= len) continue; const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo); z[offset] = sd::math::nd4j_log(z[offset] / shmem[0]); } } /////////////////////////////////////////////////////////////////// template linkage void logSoftMaxForVectorCudaLauncher(const cudaStream_t* stream, const void *vx, const Nd4jLong *xzShapeInfo, void *vz) { logSoftMaxForVectorCuda<<<1, MAX_NUM_THREADS, MAX_NUM_THREADS * sizeof(T) + 512, *stream>>>(vx, xzShapeInfo, vz); } ////////////////////////////////////////////////////////////////////////// void logSoftmax(sd::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) { if(!input.isActualOnDeviceSide()) input.syncToDevice(); const int rank = input.rankOf(); if(input.isVector()) { if(rank == 1 || input.sizeAt(dimension) != 1) { BUILD_SINGLE_SELECTOR(input.dataType(), logSoftMaxForVectorCudaLauncher, (context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer()), FLOAT_TYPES); input.tickReadDevice(); } else output = 0.; } else { auto maxAlongDim = const_cast(input).reduceAlongDimension(reduce::Max, {dimension}, true); (input - maxAlongDim).applyTransform(transform::Exp, output); // output contains exponents temporarily auto sumAlongDim = output.reduceAlongDimension(reduce::Sum, {dimension}, true); output /= sumAlongDim; output.applyTransform(transform::Log, output); input.tickReadDevice(); } PointersManager manager(context, "helpers::logSoftmax"); manager.synchronize(); output.tickWriteDevice(); } /////////////////////////////////////////////////////////////////// template __global__ linkage void softMaxDerivForVectorCuda(const void *vx, const Nd4jLong *xzShapeInfo, void *vz) { // logic of this kernel is based on assumption gridDim = 1 const auto x = reinterpret_cast(vx); auto z = reinterpret_cast(vz); __shared__ Nd4jLong len; __shared__ int numOfIters; __shared__ T* shmem; if (threadIdx.x == 0) { extern __shared__ char shared[]; shmem = reinterpret_cast(shared); len = shape::length(xzShapeInfo); numOfIters = (len + blockDim.x - 1) / blockDim.x; // ceil (len / blockDim.x) } __syncthreads(); T temp = -DataTypeUtils::max(); // set start value to compare with at first iteration, FIXME: what if T is unsigned ?? // ************ evaluate max element in input array x ************ // for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx < len) { const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo); shmem[threadIdx.x] = (threadIdx.x != 0) ? x[offset] : sd::math::nd4j_max(x[offset], temp); // take into account max element evaluated on previous iteration and stored in temp } else shmem[threadIdx.x] = -DataTypeUtils::max(); // FIXME: what if T is unsigned ?? __syncthreads(); for (int s = blockDim.x / 2; s > 0; s /= 2) { if(threadIdx.x < s) shmem[threadIdx.x] = sd::math::nd4j_max(shmem[threadIdx.x], shmem[threadIdx.x + s]); __syncthreads(); } temp = shmem[0]; // save max value calculated at current iteration } const T max = temp; temp = 0; // ************ evaluate value of exp(x[offset] - max) per each element, store it to shared memory shmem ************ // // at the same evaluate sum of exponents, sum will be stored in shmem[0] for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx < len) { const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo); z[offset] = sd::math::nd4j_exp(x[offset] - max); shmem[threadIdx.x] = (threadIdx.x != 0) ? z[offset] : (z[offset] + temp); // take into account sum element evaluated on previous iteration and stored in temp } else shmem[threadIdx.x] = 0; __syncthreads(); for (int s = blockDim.x / 2; s > 0; s /= 2) { if(threadIdx.x < s) shmem[threadIdx.x] += shmem[threadIdx.x + s]; __syncthreads(); } temp = shmem[0]; // save sum calculated at current iteration } // ************ evaluate (z[offset] / sum) and derivative z[offset] = z[offset] * (1 - z[offset]) ************ // for (int i = 0; i < numOfIters; ++i) { const Nd4jLong elemIdx = i * blockDim.x + threadIdx.x; if(elemIdx >= len) continue; const Nd4jLong offset = shape::getIndexOffset(elemIdx, xzShapeInfo); z[offset] /= shmem[0]; z[offset] *= (1.f - z[offset]); // derivative } } /////////////////////////////////////////////////////////////////// template linkage void softMaxDerivForVectorCudaLauncher(const cudaStream_t* stream, const void *vx, const Nd4jLong *xzShapeInfo, void *vz) { softMaxDerivForVectorCuda<<<1, MAX_NUM_THREADS, MAX_NUM_THREADS * sizeof(T) + 512, *stream>>>(vx, xzShapeInfo, vz); } /////////////////////////////////////////////////////////////////// void softmaxDerivative(sd::LaunchContext * context, const NDArray& input, NDArray& output, const int dimension) { if(!input.isActualOnDeviceSide()) input.syncToDevice(); const int rank = input.rankOf(); int temp; if(shape::isCommonVector(input.shapeInfo(), temp)) { BUILD_SINGLE_SELECTOR(input.dataType(), softMaxDerivForVectorCudaLauncher, (context->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer()), FLOAT_TYPES); input.tickReadDevice(); } else { auto maxAlongDim = const_cast(input).reduceAlongDimension(reduce::Max, {dimension}, true); (input - maxAlongDim).applyTransform(transform::Exp, output); // output contains exponents temporarily auto sumAlongDim = output.reduceAlongDimension(reduce::Sum, {dimension}, true); output /= sumAlongDim; output *= (1.f - output); // derivative input.tickReadDevice(); } PointersManager manager(context, "helpers::softmaxDerivative"); manager.synchronize(); output.tickWriteDevice(); } template linkage void thresholdRelu_(NDArray const& input, double threshold, NDArray& output) { auto routine = LAMBDA_T(_x, threshold) { return _x > (T)threshold ? _x: (T)0.f; }; const_cast(input).applyLambda(routine, output); } void thresholdRelu(sd::LaunchContext * context, NDArray const& input, double threshold, NDArray& output) { BUILD_SINGLE_SELECTOR(input.dataType(), thresholdRelu_, (input, threshold, output), FLOAT_TYPES); } template linkage void thresholdReluDerivative_(NDArray* input, double theta, NDArray* dLdO, NDArray* output) { auto derivative = LAMBDA_TT(_x, grO, theta) {if (_x > theta) return grO; else return static_cast(0); }; input->applyPairwiseLambda(*dLdO, derivative, *output); } void thresholdReluDerivative(sd::LaunchContext * context, NDArray* input, double threshold, NDArray* dLdO, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), thresholdReluDerivative_, (input, threshold, dLdO, output), FLOAT_TYPES); } } } }