/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #include #include #include namespace sd { namespace ops { namespace helpers { /////////////////////////////////////////////////////////////////// // x - indices, z - input/output template Nd4jLong checkIndices_(const NDArray& indices, const NDArray& output, const int axis) { std::atomic numOfBadIndx{0}; const auto x = indices.bufferAsT(); const auto xShapeInfo = indices.getShapeInfo(); const auto zShapeInfo = output.getShapeInfo(); const auto xRank = indices.rankOf(); auto func = PRAGMA_THREADS_FOR { Nd4jLong xCoords[MAX_RANK]; for (auto i = start; i < stop; i++) { shape::index2coords(i, xShapeInfo, xCoords); const Nd4jLong currentInd = x[shape::getOffset(xShapeInfo, xCoords)]; if(currentInd >= shape::sizeAt(zShapeInfo, axis == -1 ? xCoords[xRank-1] : axis)) { printf("checkIndices: out of range element %lld at index %ld \n", currentInd, i); ++numOfBadIndx; } } }; sd::Threads::parallel_for(func, 0, indices.lengthOf()); return numOfBadIndx; } /////////////////////////////////////////////////////////////////// Nd4jLong checkIndices(sd::LaunchContext *context, const NDArray& indices, const NDArray& output, const int axis) { BUILD_SINGLE_SELECTOR(indices.dataType(), return checkIndices_, (indices, output, axis), INDEXING_TYPES); } /////////////////////////////////////////////////////////////////// void scatter(sd::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) { const int outRank = output.rankOf(); const int indRank = indices.rankOf(); const int updRank = updates.rankOf(); const Nd4jLong indLen = indices.lengthOf(); if(outRank == 1) { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { Nd4jLong idx = indices.e(i); NDArray out = output({idx, idx + 1}); out.applyPairwiseTransform(op, updates.e(i)); } }; sd::Threads::parallel_tad(func, 0, indLen, 1, lock ? 1 : sd::Environment::getInstance()->maxThreads()); } else { // outRank > 1 int sizeOfDims = indRank; if(outRank == updRank && indices.isVector()) sizeOfDims = 1; std::vector dimsToExcludeUpd(sizeOfDims); std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0); auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { NDArray outSubArr = output(indices.e(i), std::vector({0})); NDArray updSubArr = updates(i, dimsToExcludeUpd); outSubArr.applyPairwiseTransform(op, updSubArr); } }; sd::Threads::parallel_tad(func, 0, indLen, 1, lock ? 1 : sd::Environment::getInstance()->maxThreads()); } } /////////////////////////////////////////////////////////////////// void scatterND(sd::LaunchContext *context, pairwise::Ops op, const NDArray& indices, const NDArray& updates, NDArray& output, const bool lock) { const Nd4jLong indLen = indices.lengthOf(); const int outRank = output.rankOf(); const int indRank = indices.rankOf(); const Nd4jLong indLastDim = indices.sizeAt(-1); if(outRank == 1) { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { Nd4jLong idx = indices.e(i); NDArray out = output({idx, idx + 1}); out.applyPairwiseTransform(op, updates.e(i), nullptr); } }; sd::Threads::parallel_tad(func, 0, indLen, 1, lock ? 1 : sd::Environment::getInstance()->maxThreads()); } else { std::vector dimsToExcludeInd = ShapeUtils::evalDimsToExclude(indRank, {indRank-1}); std::vector dimsToExcludeUpd(indRank - 1); std::iota(dimsToExcludeUpd.begin(), dimsToExcludeUpd.end(), 0); auto func = PRAGMA_THREADS_FOR { std::vector idxRangeOut(2*outRank, 0); for (auto i = start; i < stop; i++) { NDArray indSubArr = indices(i, dimsToExcludeInd); for (Nd4jLong j = 0; j < indLastDim; ++j) { idxRangeOut[2 * j] = indSubArr.e(j); idxRangeOut[2 * j + 1] = idxRangeOut[2 * j] + 1; } NDArray outSubArr = output(idxRangeOut); NDArray updSubArr = updates(i, dimsToExcludeUpd); outSubArr.applyPairwiseTransform(op, updSubArr); } }; sd::Threads::parallel_tad(func, 0, indLen / indLastDim, 1, lock ? 1 : sd::Environment::getInstance()->maxThreads()); } } void scatterForLoss(sd::LaunchContext *context, const NDArray& indices, NDArray& updates, NDArray& output, const bool calcGrad) { // shapes of indices and output must be the same // shape of indices should be the same as updates shape with last dimension excluded // for example if updates is {a,b,c} then indices should be {a,b} const Nd4jLong indicesLen = indices.lengthOf(); std::vector dimsToExclude = ShapeUtils::evalDimsToExclude(updates.rankOf(), {-1}); if(!calcGrad) { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { auto subArr = updates(i, dimsToExclude); output.p(i, subArr.e(indices.e(i))); } }; sd::Threads::parallel_for(func, 0, indicesLen); } else { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { auto subArr = updates(i, dimsToExclude); auto ind = indices.e(i); subArr.p(ind, subArr.e(ind) - 1.); } }; sd::Threads::parallel_for(func, 0, indicesLen); } } } } }