/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by Yurii Shyrma on 12.12.2017 // #include #include #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// // calculate factorial template static FORCEINLINE T getFactorial(const int n) { if (n < 0) throw std::runtime_error("factorial is not defined for negative number !"); if(n==0 || n==1) return (T)1.f; T result = (T)1.f; for(int i = 2; i <= n; ++i) result *= i; return result; } ////////////////////////////////////////////////////////////////////////// // implementation is based on serial representation written in terms of the Hurwitz zeta function as polygamma = (-1)^{n+1} * n! * zeta(n+1, x) template static FORCEINLINE T polyGammaScalar(sd::LaunchContext * context, const int n, const T x) { // if (n < 0) // throw("polyGamma function: n must be >= 0 !"); // if (x <= (T)0.) // throw("polyGamma function: x must be > 0 !"); int sign = (n + 1) % 2 ? -1 : 1; // T factorial = (T)std::tgamma(n + 1); return sign * getFactorial(n) * zetaScalar((T)(n + 1), x); } ////////////////////////////////////////////////////////////////////////// // calculate polygamma function for arrays template static void polyGamma_(sd::LaunchContext * context, const NDArray& n, const NDArray& x, NDArray& output) { auto func = PRAGMA_THREADS_FOR { for (auto i = start; i < stop; i++) { const T order = n.e(i); if(order != static_cast(order)) // if order has fractional part then do not perform calculations and return NAN output.p(i, std::numeric_limits::quiet_NaN()); else if (order == 0) // polygamma function of zero order is digamma function output.p(i, diGammaScalar(x.e(i))); else output.p(i, polyGammaScalar(context, order, x.e(i))); } }; sd::Threads::parallel_for(func, 0, x.lengthOf()); } void polyGamma(sd::LaunchContext * context, const NDArray& n, const NDArray& x, NDArray& output) { BUILD_SINGLE_SELECTOR(x.dataType(), polyGamma_, (context, n, x, output), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void polyGamma_, (sd::LaunchContext * context, const NDArray& n, const NDArray& x, NDArray& output), FLOAT_TYPES); } } }