/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author George A. Shulinok , created on 4/18/2019 // #include #include namespace sd { namespace ops { namespace helpers { Nd4jLong barnes_row_count(const NDArray* rowP, const NDArray* colP, Nd4jLong N, NDArray& rowCounts) { int* pRowCounts = reinterpret_cast(rowCounts.buffer()); int const* pRows = reinterpret_cast(rowP->getBuffer()); int const* pCols = reinterpret_cast(colP->getBuffer()); for (Nd4jLong n = 0; n < N; n++) { int begin = pRows[n];//->e(n); int end = pRows[n + 1];//rowP->e(n + 1); for (int i = begin; i < end; i++) { bool present = false; for (int m = pRows[pCols[i]]; m < pRows[pCols[i] + 1]; m++) if (pCols[m] == n) { present = true; break; } ++pRowCounts[n]; if (!present) ++pRowCounts[pCols[i]]; } } NDArray numElementsArr = rowCounts.sumNumber(); //reduceAlongDimension(reduce::Sum, {}); //rowCounts.printBuffer("Row counts"); auto numElements = numElementsArr.e(0); return numElements; } // static // void printVector(std::vector const& v) { // for (auto x: v) { // printf("%d ", x); // } // printf("\n"); // fflush(stdout); // } template static void barnes_symmetrize_(const NDArray* rowP, const NDArray* colP, const NDArray* valP, Nd4jLong N, NDArray* outputRows, NDArray* outputCols, NDArray* outputVals, NDArray* rowCounts) { //auto N = rowP->lengthOf() - 1; /// 2 + rowP->lengthOf() % 2; //auto numElements = output->lengthOf(); //std::vector symRowP = rowCounts->asVectorT();//NDArrayFactory::create('c', {numElements}); //NDArray symValP = NDArrayFactory::create('c', {numElements}); //symRowP.insert(symRowP.begin(),0); //symRowP(1, {0}) = *rowCounts; int const* pRows = reinterpret_cast(rowP->getBuffer()); int* symRowP = reinterpret_cast(outputRows->buffer()); symRowP[0] = 0; for (Nd4jLong n = 0; n < N; n++) symRowP[n + 1] = symRowP[n] + rowCounts->e(n); // outputRows->printBuffer("output rows"); int* symColP = reinterpret_cast(outputCols->buffer()); // symRowP.p(n + 1, symRowP.e(n) + rowCounts.e(n)) // outputRows->printBuffer("SymRows are"); int const* pCols = reinterpret_cast(colP->getBuffer()); T const* pVals = reinterpret_cast(valP->getBuffer()); T* pOutput = reinterpret_cast(outputVals->buffer()); //std::vector rowCountsV = rowCounts->getBufferAsVector(); std::vector offset(N);// = NDArrayFactory::create('c', {N}); //PRAGMA_OMP_PARALLEL_FOR_SIMD_ARGS(schedule(guided) shared(offset)) for (Nd4jLong n = 0; n < N; n++) { int begin = pRows[n]; int bound = pRows[n + 1]; for (int i = begin; i < bound; i++) { bool present = false; int colPI = pCols[i]; int start = pRows[colPI]; int end = pRows[colPI + 1]; //PRAGMA_OMP_PARALLEL_FOR_ARGS(schedule(guided) firstprivate(offset)) for (int m = start; m < end; m++) { if (pCols[m] == n) { present = true; if (n <= colPI) { symColP[symRowP[n] + offset[n]] = colPI; symColP[symRowP[colPI] + offset[colPI]] = n; pOutput[symRowP[n] + offset[n]] = pVals[i] + pVals[m]; pOutput[symRowP[colPI] + offset[colPI]] = pVals[i] + pVals[m]; } } } // If (colP[i], n) is not present, there is no addition involved if (!present) { //int colPI = pCols[i]; //if (n <= colPI) { symColP[symRowP[n] + offset[n]] = colPI; symColP[symRowP[pCols[i]] + offset[colPI]] = n; pOutput[symRowP[n] + offset[n]] = pVals[i]; pOutput[symRowP[colPI] + offset[colPI]] = pVals[i]; //} } // Update offsets if (!present || (present && n <= colPI)) { ++offset[n]; if (colPI != n) ++offset[colPI]; } // printVector(offset); } } } void barnes_symmetrize(const NDArray* rowP, const NDArray* colP, const NDArray* valP, Nd4jLong N, NDArray* outputRows, NDArray* outputCols, NDArray* outputVals, NDArray* rowCounts) { // Divide the result by two BUILD_SINGLE_SELECTOR(valP->dataType(), barnes_symmetrize_, (rowP, colP, valP, N, outputRows, outputCols, outputVals, rowCounts), NUMERIC_TYPES); *outputVals /= 2.0; //output->assign(symValP); } BUILD_SINGLE_TEMPLATE(template void barnes_symmetrize_, (const NDArray* rowP, const NDArray* colP, const NDArray* valP, Nd4jLong N, NDArray* outputRows, NDArray* outputCols, NDArray* outputVals, NDArray* rowCounts), NUMERIC_TYPES); template static void barnes_edge_forces_(const NDArray* rowP, NDArray const* colP, NDArray const* valP, int N, NDArray const* data, NDArray* output) { T const* dataP = reinterpret_cast(data->getBuffer()); T const* vals = reinterpret_cast(valP->getBuffer()); T* outputP = reinterpret_cast(output->buffer()); int colCount = data->columns(); // auto shift = 0; auto rowSize = sizeof(T) * colCount; auto func = PRAGMA_THREADS_FOR { for (auto n = start; n < stop; n++) { int s = rowP->e(n); int end = rowP->e(n + 1); int shift = n * colCount; for (int i = s; i < end; i++) { T const *thisSlice = dataP + colP->e(i) * colCount; T res = 1; for (int k = 0; k < colCount; k++) { auto tempVal = dataP[shift + k] - thisSlice[k];//thisSlice[k]; res += tempVal * tempVal; } res = vals[i] / res; for (int k = 0; k < colCount; k++) outputP[shift + k] += ((dataP[shift + k] - thisSlice[k]) * res); } //shift += colCount; } }; sd::Threads::parallel_tad(func, 0, N); } void barnes_edge_forces(const NDArray* rowP, NDArray const* colP, NDArray const* valP, int N, NDArray* output, NDArray const& data) { // Loop over all edges in the graph BUILD_SINGLE_SELECTOR(output->dataType(), barnes_edge_forces_, (rowP, colP, valP, N, &data, output), FLOAT_TYPES); } BUILD_SINGLE_TEMPLATE(template void barnes_edge_forces_, (const NDArray* rowP, NDArray const* colP, NDArray const* valP, int N, NDArray const* data, NDArray* output), FLOAT_TYPES); template static void barnes_gains_(NDArray* input, NDArray* gradX, NDArray* epsilon, NDArray* output) { // gains = gains.add(.2).muli(sign(yGrads)).neq(sign(yIncs)).castTo(Nd4j.defaultFloatingPointType()) // .addi(gains.mul(0.8).muli(sign(yGrads)).neq(sign(yIncs))); auto gainsInternal = LAMBDA_TTT(x, grad, eps) { // return T((x + 2.) * sd::math::nd4j_sign(grad) != sd::math::nd4j_sign(eps)) + T(x * 0.8 * sd::math::nd4j_sign(grad) != sd::math::nd4j_sign(eps)); //return T((x + 2.) * sd::math::nd4j_sign(grad) == sd::math::nd4j_sign(eps)) + T(x * 0.8 * sd::math::nd4j_sign(grad) == sd::math::nd4j_sign(eps)); T res = sd::math::nd4j_sign(grad) != sd::math::nd4j_sign(eps) ? x + T(.2) : x * T(.8); if(res < .01) res = .01; return res; }; input->applyTriplewiseLambda(*gradX, *epsilon, gainsInternal, *output); } void barnes_gains(NDArray* input, NDArray* gradX, NDArray* epsilon, NDArray* output) { // gains = gains.add(.2).muli(sign(yGrads)).neq(sign(yIncs)).castTo(Nd4j.defaultFloatingPointType()) // .addi(gains.mul(0.8).muli(sign(yGrads)).neq(sign(yIncs))); BUILD_SINGLE_SELECTOR(input->dataType(), barnes_gains_, (input, gradX, epsilon, output), NUMERIC_TYPES); // auto signGradX = *gradX; // auto signEpsilon = *epsilon; // gradX->applyTransform(transform::Sign, &signGradX, nullptr); // epsilon->applyTransform(transform::Sign, &signEpsilon, nullptr); // auto leftPart = (*input + 2.) * signGradX; // auto leftPartBool = NDArrayFactory::create(leftPart.ordering(), leftPart.getShapeAsVector()); // // leftPart.applyPairwiseTransform(pairwise::NotEqualTo, &signEpsilon, &leftPartBool, nullptr); // auto rightPart = *input * 0.8 * signGradX; // auto rightPartBool = NDArrayFactory::create(rightPart.ordering(), rightPart.getShapeAsVector()); // rightPart.applyPairwiseTransform(pairwise::NotEqualTo, &signEpsilon, &rightPartBool, nullptr); // leftPart.assign(leftPartBool); // rightPart.assign(rightPartBool); // leftPart.applyPairwiseTransform(pairwise::Add, &rightPart, output, nullptr); } BUILD_SINGLE_TEMPLATE(template void barnes_gains_, (NDArray* input, NDArray* gradX, NDArray* epsilon, NDArray* output), NUMERIC_TYPES); bool cell_contains(NDArray* corner, NDArray* width, NDArray* point, Nd4jLong dimension) { auto cornerMinusWidth = *corner - *width; auto cornerPlusWidth = *corner + *width; for (Nd4jLong i = 0; i < dimension; i++) { if (cornerMinusWidth.e(i) > point->e(i)) return false; if (cornerPlusWidth.e(i) < point->e(i)) return false; } return true; } } } }