/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author raver119@gmail.com // #include #include #include #include #include #include #include using namespace simdOps; namespace functions { namespace broadcast { template void BroadcastBool::exec(const int opNum, const void *x, const Nd4jLong *xShapeInfo, const void *y, const Nd4jLong *yShapeInfo, void *z, const Nd4jLong *zShapeInfo, void *extraParams, int *dimension, int dimensionLength, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffset, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffset, uint64_t start, uint64_t stop) { DISPATCH_BY_OPNUM_TT(exec, PARAMS(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams, dimension, dimensionLength, xTadShapeInfo, xTadOffset, zTadShapeInfo, zTadOffset, start, stop), BROADCAST_BOOL_OPS); } template void BroadcastBool::exec(const int opNum, const void *x, const Nd4jLong *xShapeInfo, const void *y, const Nd4jLong *yShapeInfo, void *z, const Nd4jLong *zShapeInfo, void* extraParams) { DISPATCH_BY_OPNUM_TT(exec, PARAMS(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams), BROADCAST_BOOL_OPS); } template void BroadcastBool::execInverse(const int opNum, const void *x, const Nd4jLong *xShapeInfo, const void *y, const Nd4jLong *yShapeInfo, void *z, const Nd4jLong *zShapeInfo, void *extraParams, int *dimension, int dimensionLength, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffset, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffset, uint64_t start, uint64_t stop) { DISPATCH_BY_OPNUM_TT(execInverse, PARAMS(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams, dimension, dimensionLength, xTadShapeInfo, xTadOffset, zTadShapeInfo, zTadOffset, start, stop), BROADCAST_BOOL_OPS); } template template void BroadcastBool::exec(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, void *vextraParams, int *dimension, int dimensionLength, const Nd4jLong *xTadShapeInfo, const Nd4jLong *xTadOffset, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffset, uint64_t start, uint64_t stop) { auto x = reinterpret_cast(vx); auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); auto extraParams = reinterpret_cast(vextraParams); //decompose in to several sub tads after //moving all dimensions (in sorted order) //to the back. //permuted version of the x shape info for setting up the tad problem auto xTadShapeShapeInfo = xTadShapeInfo; auto tadOffsets = xTadOffset; if (xTadShapeInfo == nullptr || tadOffsets == nullptr) { auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(xShapeInfo, dimension, dimensionLength); xTadShapeShapeInfo = const_cast(tadPack.primaryShapeInfo()); tadOffsets = const_cast(tadPack.primaryOffsets()); } //int *resultStride = shape::stride(xTadShapeShapeInfo); unsigned int tadLength = shape::length(xTadShapeShapeInfo);//shape::length(xTadShapeShapeInfo); unsigned int tads = shape::length(xShapeInfo) / tadLength; if (zTadShapeInfo == nullptr) { zTadShapeInfo = xTadShapeShapeInfo; zTadOffset = tadOffsets; } auto lenZ = shape::length(zTadShapeInfo); auto lenY = shape::length(yShapeInfo); int tadsPerThread = tads / TAD_THRESHOLD; int threads = sd::math::nd4j_max(1, tadsPerThread); threads = sd::math::nd4j_min(threads, sd::Environment::getInstance().maxThreads()); auto xEws = shape::elementWiseStride(xTadShapeShapeInfo); auto yEws = shape::elementWiseStride(yShapeInfo); auto zEws = shape::elementWiseStride(zTadShapeInfo); const sd::LoopKind::Kind kindOfLoop = sd::LoopKind::deduceKindOfLoopXYZ(xTadShapeShapeInfo, yShapeInfo, zTadShapeInfo); if (kindOfLoop == sd::LoopKind::EWS1) { for (auto i = start; i < stop; i++) { auto oX = x + tadOffsets[i]; auto oZ = z + zTadOffset[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) oZ[f] = OpType::op(oX[f], y[f], extraParams); } } else if(kindOfLoop == sd::LoopKind::EWSNONZERO) { for (auto i = start; i < stop; i ++) { auto oX = x + tadOffsets[i]; auto oZ = z + zTadOffset[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) oZ[f * zEws] = OpType::op(oX[f * xEws], y[f * yEws], extraParams); }; } else if(shape::haveSameShapeAndStrides(xTadShapeShapeInfo, yShapeInfo) && shape::haveSameShapeAndStrides(xTadShapeShapeInfo, zTadShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xTadShapeShapeInfo, tadShapeShapeInfoCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oX = x + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto offset = shape::indexOffset(f, xTadShapeShapeInfo, tadShapeShapeInfoCast, canCastX); oZ[offset] = OpType::op(oX[offset], y[offset], extraParams); } }; } else if(shape::haveSameShapeAndStrides(xTadShapeShapeInfo, yShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; uint tadShapeInfoZCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xTadShapeShapeInfo, tadShapeShapeInfoCast); bool canCastZ = sd::DataTypeUtils::castShapeInfo(zTadShapeInfo, tadShapeInfoZCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oX = x + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto offset = shape::indexOffset(f, xTadShapeShapeInfo, tadShapeShapeInfoCast, canCastX); auto zOffset = shape::indexOffset(f, zTadShapeInfo, tadShapeInfoZCast, canCastZ); oZ[zOffset] = OpType::op(oX[offset], y[offset], extraParams); } }; } else if(shape::haveSameShapeAndStrides(xTadShapeShapeInfo, zTadShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; uint yShapeInfoCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xTadShapeShapeInfo, tadShapeShapeInfoCast); bool canCastY = sd::DataTypeUtils::castShapeInfo(yShapeInfo, yShapeInfoCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oX = x + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto offset = shape::indexOffset(f, xTadShapeShapeInfo, tadShapeShapeInfoCast, canCastX); auto yOffset = shape::indexOffset(f, yShapeInfo, yShapeInfoCast, canCastY); oZ[offset] = OpType::op(oX[offset], y[yOffset], extraParams); } }; } else if(shape::haveSameShapeAndStrides(yShapeInfo, zTadShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; uint yShapeInfoCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xTadShapeShapeInfo, tadShapeShapeInfoCast); bool canCastY = sd::DataTypeUtils::castShapeInfo(yShapeInfo, yShapeInfoCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oX = x + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto xOffset = shape::indexOffset(f, xTadShapeShapeInfo, tadShapeShapeInfoCast, canCastX); auto offset = shape::indexOffset(f, yShapeInfo, yShapeInfoCast, canCastY); oZ[offset] = OpType::op(oX[xOffset], y[offset], extraParams); } }; } else { uint tadShapeShapeInfoCast[MAX_RANK]; uint tadShapeInfoZCast[MAX_RANK]; uint yShapeInfoCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xTadShapeShapeInfo, tadShapeShapeInfoCast); bool canCastY = sd::DataTypeUtils::castShapeInfo(yShapeInfo, yShapeInfoCast); bool canCastZ = sd::DataTypeUtils::castShapeInfo(zTadShapeInfo, tadShapeInfoZCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oX = x + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto xOffset = shape::indexOffset(f, xTadShapeShapeInfo, tadShapeShapeInfoCast, canCastX); auto yOffset = shape::indexOffset(f, yShapeInfo, yShapeInfoCast, canCastY); auto zOffset = shape::indexOffset(f, zTadShapeInfo, tadShapeInfoZCast, canCastZ); oZ[zOffset] = OpType::op(oX[xOffset], y[yOffset], extraParams); } }; } } template template void BroadcastBool::execInverse(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, void *vextraParams, int *dimension, int dimensionLength, const Nd4jLong *yTadShapeInfo, const Nd4jLong *yTadOffset, const Nd4jLong *zTadShapeInfo, const Nd4jLong *zTadOffset, uint64_t start, uint64_t stop) { auto x = reinterpret_cast(vx); auto y = reinterpret_cast(vy); auto z = reinterpret_cast(vz); auto extraParams = reinterpret_cast(vextraParams); //decompose in to several sub tads after //moving all dimensions (in sorted order) //to the back. //permuted version of the x shape info for setting up the tad problem auto yTadShapeShapeInfo = yTadShapeInfo; auto tadOffsets = yTadOffset; if (yTadShapeInfo == nullptr || tadOffsets == nullptr) { auto tadPack = sd::ConstantTadHelper::getInstance().tadForDimensions(yShapeInfo, dimension, dimensionLength); yTadShapeShapeInfo = const_cast(tadPack.primaryShapeInfo()); tadOffsets = const_cast(tadPack.primaryOffsets()); } //int *resultStride = shape::stride(yTadShapeShapeInfo); unsigned int tadLength = shape::length(yTadShapeShapeInfo); unsigned int tads = shape::length(yShapeInfo) / tadLength; if (zTadShapeInfo == nullptr) { zTadShapeInfo = yTadShapeShapeInfo; zTadOffset = tadOffsets; } auto lenZ = shape::length(zTadShapeInfo); auto lenX = shape::length(xShapeInfo); int tadsPerThread = tads / TAD_THRESHOLD; int threads = sd::math::nd4j_max(1, tadsPerThread); threads = sd::math::nd4j_min(threads, sd::Environment::getInstance().maxThreads()); auto yEws = shape::elementWiseStride(yTadShapeShapeInfo); auto xEws = shape::elementWiseStride(xShapeInfo); auto zEws = shape::elementWiseStride(zTadShapeInfo); const sd::LoopKind::Kind kindOfLoop = sd::LoopKind::deduceKindOfLoopXYZ(yTadShapeShapeInfo, xShapeInfo, zTadShapeInfo); if (kindOfLoop == sd::LoopKind::EWS1) { for (auto i = start; i < stop; i ++) { auto oY = y + tadOffsets[i]; auto oZ = z + zTadOffset[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) oZ[f] = OpType::op(x[f], oY[f], extraParams); } } else if(kindOfLoop == sd::LoopKind::EWSNONZERO) { for (auto i = start; i < stop; i ++) { auto oY = y + tadOffsets[i]; auto oZ = z + zTadOffset[i]; PRAGMA_OMP_SIMD for (uint f = 0; f < tadLength; f++) oZ[f * zEws] = OpType::op(x[f * xEws], oY[f * yEws], extraParams); } } else if(shape::haveSameShapeAndStrides(yTadShapeShapeInfo, xShapeInfo) && shape::haveSameShapeAndStrides(yTadShapeShapeInfo, zTadShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; bool canCastY = sd::DataTypeUtils::castShapeInfo(yTadShapeShapeInfo, tadShapeShapeInfoCast); for (auto i = start; i < stop; i ++) { auto oY = y + tadOffsets[i]; auto oZ = z + zTadOffset[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto offset = shape::indexOffset(f, yTadShapeShapeInfo, tadShapeShapeInfoCast, canCastY); oZ[offset] = OpType::op(x[offset], oY[offset], extraParams); } } } else if(shape::haveSameShapeAndStrides(yTadShapeShapeInfo, xShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; uint tadShapeInfoZCast[MAX_RANK]; bool canCastY = sd::DataTypeUtils::castShapeInfo(yTadShapeShapeInfo, tadShapeShapeInfoCast); bool canCastZ = sd::DataTypeUtils::castShapeInfo(zTadShapeInfo, tadShapeInfoZCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oY = y + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto offset = shape::indexOffset(f, yTadShapeShapeInfo, tadShapeShapeInfoCast, canCastY); auto zOffset = shape::indexOffset(f, zTadShapeInfo, tadShapeInfoZCast, canCastZ); oZ[zOffset] = OpType::op(x[offset], oY[offset], extraParams); } } } else if(shape::haveSameShapeAndStrides(yTadShapeShapeInfo, zTadShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; uint xShapeInfoCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast); bool canCastY = sd::DataTypeUtils::castShapeInfo(yTadShapeShapeInfo, tadShapeShapeInfoCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oY = y + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto offset = shape::indexOffset(f, yTadShapeShapeInfo, tadShapeShapeInfoCast, canCastY); auto xOffset = shape::indexOffset(f, xShapeInfo, xShapeInfoCast, canCastX); oZ[offset] = OpType::op(x[xOffset], oY[offset], extraParams); } } } else if(shape::haveSameShapeAndStrides(xShapeInfo, zTadShapeInfo)) { uint tadShapeShapeInfoCast[MAX_RANK]; uint xShapeInfoCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast); bool canCastY = sd::DataTypeUtils::castShapeInfo(yTadShapeShapeInfo, tadShapeShapeInfoCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oY = y + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto yOffset = shape::indexOffset(f, yTadShapeShapeInfo, tadShapeShapeInfoCast, canCastY); auto offset = shape::indexOffset(f, xShapeInfo, xShapeInfoCast, canCastX); oZ[offset] = OpType::op(x[offset], oY[yOffset], extraParams); } } } else { uint xShapeInfoCast[MAX_RANK]; uint tadShapeShapeInfoCast[MAX_RANK]; uint tadShapeInfoZCast[MAX_RANK]; bool canCastX = sd::DataTypeUtils::castShapeInfo(xShapeInfo, xShapeInfoCast); bool canCastY = sd::DataTypeUtils::castShapeInfo(yTadShapeShapeInfo, tadShapeShapeInfoCast); bool canCastZ = sd::DataTypeUtils::castShapeInfo(zTadShapeInfo, tadShapeInfoZCast); for (auto i = start; i < stop; i ++) { auto oZ = z + zTadOffset[i]; auto oY = y + tadOffsets[i]; PRAGMA_OMP_SIMD for (unsigned int f = 0; f < tadLength; f++) { auto xOffset = shape::indexOffset(f, xShapeInfo, xShapeInfoCast, canCastX); auto yOffset = shape::indexOffset(f, yTadShapeShapeInfo, tadShapeShapeInfoCast, canCastY); auto zOffset = shape::indexOffset(f, zTadShapeInfo, tadShapeInfoZCast, canCastZ); oZ[zOffset] = OpType::op(x[xOffset], oY[yOffset], extraParams); } } } } //////////////////////////////////////////////////////////////////////// template static void execRank1(const X *x, const Nd4jLong *xShapeInfo, const X *y, const Nd4jLong *yShapeInfo, Z* z, const Nd4jLong *zShapeInfo, X* extraParams) { uint zAxis0 = shape::sizeAt(zShapeInfo, 0); Nd4jLong xStrd0 = shape::strideAt(xShapeInfo, 0); Nd4jLong yStrd0 = shape::strideAt(yShapeInfo, 0); Nd4jLong zStrd0 = shape::strideAt(zShapeInfo, 0); auto func = PRAGMA_THREADS_FOR{ if(zStrd0 == 1 && xStrd0 == 1 && yStrd0 == 0) { for (auto i0 = start; i0 < stop; ++i0) z[i0] = OpType::op(x[i0], *y, extraParams); } else if(zStrd0 == 1 && xStrd0 == 0 && yStrd0 == 1) { for (auto i0 = start; i0 < stop; ++i0) z[i0] = OpType::op(*x, y[i0], extraParams); } else if(zStrd0 == 1 && xStrd0 == 1 && yStrd0 == 1) { for (auto i0 = start; i0 < stop; ++i0) z[i0] = OpType::op(x[i0], y[i0], extraParams); } else { for (auto i0 = start; i0 < stop; ++i0) z[i0 * zStrd0] = OpType::op(x[i0 * xStrd0], y[i0 * yStrd0], extraParams); } }; samediff::Threads::parallel_tad(func, 0, zAxis0); } //////////////////////////////////////////////////////////////////////// template static void execRank2(const X *x, const Nd4jLong *xShapeInfo, const X *y, const Nd4jLong *yShapeInfo, Z* z, const Nd4jLong *zShapeInfo, X* extraParams) { uint zAxis0 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 1); Nd4jLong xStrd0 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 1); Nd4jLong yStrd0 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 1); Nd4jLong zStrd0 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 1); uint zAxis1 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 0); Nd4jLong xStrd1 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 0); Nd4jLong yStrd1 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 0); Nd4jLong zStrd1 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 0); auto func = PRAGMA_THREADS_FOR{ for (auto i0 = start; i0 < stop; ++i0) { auto x0 = x + i0 * xStrd0; auto y0 = y + i0 * yStrd0; auto z0 = z + i0 * zStrd0; if(zStrd1 == 1 && xStrd1 == 1 && yStrd1 == 0) for (uint i1 = 0; i1 < zAxis1; ++i1) z0[i1] = OpType::op(x0[i1], *y0, extraParams); else if(zStrd1 == 1 && xStrd1 == 0 && yStrd1 == 1) for (uint i1 = 0; i1 < zAxis1; ++i1) z0[i1] = OpType::op(*x0, y0[i1], extraParams); else if(zStrd1 == 1 && xStrd1 == 1 && yStrd1 == 1) for (uint i1 = 0; i1 < zAxis1; ++i1) z0[i1] = OpType::op(x0[i1], y0[i1], extraParams); else for (uint i1 = 0; i1 < zAxis1; ++i1) z0[i1 * zStrd1] = OpType::op(x0[i1 * xStrd1], y0[i1 * yStrd1], extraParams); } }; samediff::Threads::parallel_tad(func, 0, zAxis0); } //////////////////////////////////////////////////////////////////////// template static void execRank3(const X *x, const Nd4jLong *xShapeInfo, const X *y, const Nd4jLong *yShapeInfo, Z* z, const Nd4jLong *zShapeInfo, X* extraParams) { uint zAxis0 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 2); Nd4jLong xStrd0 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 2); Nd4jLong yStrd0 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 2); Nd4jLong zStrd0 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 2); uint zAxis1 = shape::sizeAt(zShapeInfo, 1); Nd4jLong xStrd1 = shape::strideAt(xShapeInfo, 1); Nd4jLong yStrd1 = shape::strideAt(yShapeInfo, 1); Nd4jLong zStrd1 = shape::strideAt(zShapeInfo, 1); uint zAxis2 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 0); Nd4jLong xStrd2 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 0); Nd4jLong yStrd2 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 0); Nd4jLong zStrd2 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 0); auto func = PRAGMA_THREADS_FOR_2D { for (auto i0 = start_x; i0 < stop_x; ++i0) { for (auto i1 = start_y; i1 < stop_y; ++i1) { auto x1 = x + i0 * xStrd0 + i1 * xStrd1; auto y1 = y + i0 * yStrd0 + i1 * yStrd1; auto z1 = z + i0 * zStrd0 + i1 * zStrd1; if(zStrd2 == 1 && xStrd2 == 1 && yStrd2 == 0) for (uint i2 = 0; i2 < zAxis2; ++i2) z1[i2] = OpType::op(x1[i2], *y1, extraParams); else if(zStrd2 == 1 && xStrd2 == 0 && yStrd2 == 1) for (uint i2 = 0; i2 < zAxis2; ++i2) z1[i2] = OpType::op(*x1, y1[i2], extraParams); else if(zStrd2 == 1 && xStrd2 == 1 && yStrd2 == 1) for (uint i2 = 0; i2 < zAxis2; ++i2) z1[i2] = OpType::op(x1[i2], y1[i2], extraParams); else for (uint i2 = 0; i2 < zAxis2; ++i2) z1[i2 * zStrd2] = OpType::op(x1[i2 * xStrd2], y1[i2 * yStrd2], extraParams); } } }; samediff::Threads::parallel_for(func, 0,zAxis0,1, 0,zAxis1,1); } //////////////////////////////////////////////////////////////////////// template static void execRank4(const X *x, const Nd4jLong *xShapeInfo, const X *y, const Nd4jLong *yShapeInfo, Z* z, const Nd4jLong *zShapeInfo, X* extraParams) { uint zAxis0 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 3); Nd4jLong xStrd0 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 3); Nd4jLong yStrd0 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 3); Nd4jLong zStrd0 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 3); uint zAxis1 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 2); Nd4jLong xStrd1 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 2); Nd4jLong yStrd1 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 2); Nd4jLong zStrd1 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 2); uint zAxis2 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 1); Nd4jLong xStrd2 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 1); Nd4jLong yStrd2 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 1); Nd4jLong zStrd2 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 2 : 1); uint zAxis3 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 0); Nd4jLong xStrd3 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 0); Nd4jLong yStrd3 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 0); Nd4jLong zStrd3 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 0); auto func = PRAGMA_THREADS_FOR_3D { for (auto i0 = start_x; i0 < stop_x; ++i0) { for (auto i1 = start_y; i1 < stop_y; ++i1) { for (auto i2 = start_z; i2 < stop_z; ++i2) { auto x2 = x + i0 * xStrd0 + i1 * xStrd1 + i2 * xStrd2; auto y2 = y + i0 * yStrd0 + i1 * yStrd1 + i2 * yStrd2; auto z2 = z + i0 * zStrd0 + i1 * zStrd1 + i2 * zStrd2; if(zStrd3 == 1 && xStrd3 == 1 && yStrd3 == 0) for (uint i3 = 0; i3 < zAxis3; ++i3) z2[i3] = OpType::op(x2[i3], *y2, extraParams); else if(zStrd3 == 1 && xStrd3 == 0 && yStrd3 == 1) for (uint i3 = 0; i3 < zAxis3; ++i3) z2[i3] = OpType::op(*x2, y2[i3], extraParams); else if(zStrd3 == 1 && xStrd3 == 1 && yStrd3 == 1) for (uint i3 = 0; i3 < zAxis3; ++i3) z2[i3] = OpType::op(x2[i3], y2[i3], extraParams); else for (uint i3 = 0; i3 < zAxis3; ++i3) z2[i3 * zStrd3] = OpType::op(x2[i3 * xStrd3], y2[i3 * yStrd3], extraParams); } } } }; samediff::Threads::parallel_for(func, 0,zAxis0,1, 0,zAxis1,1, 0,zAxis2,1); } //////////////////////////////////////////////////////////////////////// template static void execRank5(const X *x, const Nd4jLong *xShapeInfo, const X *y, const Nd4jLong *yShapeInfo, Z* z, const Nd4jLong *zShapeInfo, X* extraParams) { uint zAxis0 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 4); Nd4jLong xStrd0 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 4); Nd4jLong yStrd0 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 4); Nd4jLong zStrd0 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 0 : 4); uint zAxis1 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 3); Nd4jLong xStrd1 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 3); Nd4jLong yStrd1 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 3); Nd4jLong zStrd1 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 1 : 3); uint zAxis2 = shape::sizeAt(zShapeInfo, 2); Nd4jLong xStrd2 = shape::strideAt(xShapeInfo, 2); Nd4jLong yStrd2 = shape::strideAt(yShapeInfo, 2); Nd4jLong zStrd2 = shape::strideAt(zShapeInfo, 2); uint zAxis3 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 1); Nd4jLong xStrd3 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 1); Nd4jLong yStrd3 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 1); Nd4jLong zStrd3 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 3 : 1); uint zAxis4 = shape::sizeAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 4 : 0); Nd4jLong xStrd4 = shape::strideAt(xShapeInfo, shape::order(zShapeInfo) == 'c' ? 4 : 0); Nd4jLong yStrd4 = shape::strideAt(yShapeInfo, shape::order(zShapeInfo) == 'c' ? 4 : 0); Nd4jLong zStrd4 = shape::strideAt(zShapeInfo, shape::order(zShapeInfo) == 'c' ? 4 : 0); auto func = PRAGMA_THREADS_FOR_3D { for (auto i0 = start_x; i0 < stop_x; ++i0) { for (auto i1 = start_y; i1 < stop_y; ++i1) { for (auto i2 = start_z; i2 < stop_z; ++i2) { for (uint i3 = 0; i3 < zAxis3; ++i3) { auto x3 = x + i0 * xStrd0 + i1 * xStrd1 + i2 * xStrd2 + i3 * xStrd3; auto y3 = y + i0 * yStrd0 + i1 * yStrd1 + i2 * yStrd2 + i3 * yStrd3; auto z3 = z + i0 * zStrd0 + i1 * zStrd1 + i2 * zStrd2 + i3 * zStrd3; if(zStrd4 == 1 && xStrd4 == 1 && yStrd4 == 0) for (uint i4 = 0; i4 < zAxis4; ++i4) z3[i4] = OpType::op(x3[i4], *y3, extraParams); else if(zStrd4 == 1 && xStrd4 == 0 && yStrd4 == 1) for (uint i4 = 0; i4 < zAxis4; ++i4) z3[i4] = OpType::op(*x3, y3[i4], extraParams); else if(zStrd4 == 1 && xStrd4 == 1 && yStrd4 == 1) for (uint i4 = 0; i4 < zAxis4; ++i4) z3[i4] = OpType::op(x3[i4], y3[i4], extraParams); else for (uint i4 = 0; i4 < zAxis4; ++i4) z3[i4 * zStrd4] = OpType::op(x3[i4 * xStrd4], y3[i4 * yStrd4], extraParams); } } } } }; samediff::Threads::parallel_for(func, 0,zAxis0,1, 0,zAxis1,1, 0,zAxis2,1); } //////////////////////////////////////////////////////////////////////// template static void execDefault(const X *x, const Nd4jLong *xShapeInfo, const X *y, const Nd4jLong *yShapeInfo, Z* z, const Nd4jLong *zShapeInfo, X* extraParams) { const bool xzSameOffsets = shape::haveSameShapeAndStrides(xShapeInfo, zShapeInfo); const bool yzSameOffsets = shape::haveSameShapeAndStrides(yShapeInfo, zShapeInfo); auto func = PRAGMA_THREADS_FOR{ int coords[MAX_RANK]; Nd4jLong xOffset, yOffset, zOffset; for (auto i = start; i < stop; ++i) { shape::getOffsetBroadcast(start, i, zShapeInfo, xShapeInfo, yShapeInfo, xzSameOffsets, yzSameOffsets, coords, zOffset, xOffset, yOffset); z[zOffset] = OpType::op(x[xOffset], y[yOffset], extraParams); } }; samediff::Threads::parallel_for(func, 0, shape::length(zShapeInfo)); } //////////////////////////////////////////////////////////////////////// template template void BroadcastBool::exec(const void *vx, const Nd4jLong *xShapeInfo, const void *vy, const Nd4jLong *yShapeInfo, void *vz, const Nd4jLong *zShapeInfo, void *vextraParams) { const X* x = reinterpret_cast(vx); const X* y = reinterpret_cast(vy); Z* z = reinterpret_cast(vz); X* extraParams = reinterpret_cast(vextraParams); const int rank = shape::rank(zShapeInfo); // xRank = yRank = zRank switch (rank) { case 1: execRank1(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams); break; case 2: execRank2(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams); break; case 3: execRank3(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams); break; case 4: execRank4(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams); break; case 5: execRank5(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams); break; default: execDefault(x, xShapeInfo, y, yShapeInfo, z, zShapeInfo, extraParams); } } //BUILD_DOUBLE_TEMPLATE(template class ND4J_EXPORT BroadcastBool, , LIBND4J_TYPES, BOOL_TYPES); } }