/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com), created on 16.04.2018 // // function nnCell implements an Elman RNN cell: output = activation(Wx*x + bx + Wh*ht + bh) #include #include namespace sd { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// void rnnCell(sd::LaunchContext * context, const NDArray* xt, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* hPrev, NDArray* ht) { // xt input [bS x iS] // Wx input-to-hidden weights, [iS x nU] // Wh hidden-to-hidden weights, [nU x nU] // b biases, [2*nU]: {0, nU} are input-to-hidden biases and {nU, 2*nU} are hidden-to-hidden biases // hPrev previous cell output [bS x nU], that is at previous time step t-1, in case of projection=false -> nU=nU!!! const int nU = hPrev->sizeAt(1); // ht is current cell output [bS x nU], that is at current time step t ht->assign(mmul(*xt, *Wx) + (*b)({{0, nU}}) + mmul(*hPrev, *Wh) + (*b)({{nU, 2*nU}})); // [bS x nU] + [nU] + [bS x nU] + [nU] = [bS x nU] ht->applyTransform(transform::Tanh, *ht); } ////////////////////////////////////////////////////////////////////////// void rnnTimeLoop(sd::LaunchContext * context, const NDArray* x, const NDArray* Wx, const NDArray* Wh, const NDArray* b, const NDArray* h0, const NDArray* maxTimeStep, NDArray* h, NDArray* hFinal) { // x input [time x bS x iS] // Wx input-to-hidden weights, [iS x nU] // Wh hidden-to-hidden weights, [nU x nU] // b biases for, [2*nU] // h0 initial cell output (at time step = 0) [bS x nU] // maxTimeStep vector [bS] containing integer values within [0,time), each element of this vector set max time step per each input in batch, this means there are no calculations for time >= maxTimeStep const int time = x->sizeAt(0); const int bS = x->sizeAt(1); // at first time step if(h0) hFinal->assign(h0); else *hFinal = 0.; BlasHelper::getInstance(); // to avoid memory leak in pragma parallel loops // loop through batch of inputs for (int e = 0; e < bS; ++e) { // loop through time steps for (int t = 0; t < time; ++t) { int maxStep = maxTimeStep ? maxTimeStep->e(e) : time; auto xt = (*x)({t,t+1, e,e+1, 0,0}, true); auto ht = (*h)({t,t+1, e,e+1, 0,0}, true); auto hPrev = (*hFinal)({e,e+1, 0,0}, true); // previous state if(t >= maxStep) { ht = 0.; if(maxStep != 0) hPrev.assign((*h)({maxStep-1,maxStep, e,e+1, 0,0})); } else { helpers::rnnCell(context, &xt, Wx, Wh, b, &hPrev, &ht); hPrev.assign(ht); } } } } } } }