/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include #include #include #include #include #include namespace sd { namespace ops { namespace helpers { // FIXME -> we should optimize these helpers for the case when input matrices have c order (perform transpositions appropriately) template __global__ static void inverseColumnSignCuda(void* vu, const Nd4jLong* uShapeInfo, void* vv, const Nd4jLong* vShapeInfo) { T* u = reinterpret_cast(vu); T* v = reinterpret_cast(vv); __shared__ int rank, uLastButOneColumn, vLastButOneColumn; // uRank = vRank __shared__ Nd4jLong uLen, vLen; __shared__ Nd4jLong *sharedMem; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); rank = shape::rank(uShapeInfo); uLen = shape::length(uShapeInfo); vLen = shape::length(vShapeInfo); uLastButOneColumn = uShapeInfo[rank] - 2; vLastButOneColumn = vShapeInfo[rank - 1] - 2; } __syncthreads(); const auto ind = threadIdx.x + blockIdx.x * blockDim.x; auto coords = sharedMem + threadIdx.x * rank; // u for (Nd4jLong i = ind; i < uLen; i += gridDim.x * blockDim.x) { shape::index2coords(i, uShapeInfo, coords); if(coords[rank - 1] == 0 || coords[rank - 1] == uLastButOneColumn) // do not change sign in first and last but one columns continue; const auto uOffset = shape::getOffset(uShapeInfo, coords); u[uOffset] = -u[uOffset]; } // v for (Nd4jLong i = ind; i < vLen; i += gridDim.x * blockDim.x) { shape::index2coords(i, vShapeInfo, coords); if(coords[rank - 2] == 0 || coords[rank - 2] == vLastButOneColumn) // do not change sign in first and last but one columns continue; const auto vOffset = shape::getOffset(vShapeInfo, coords); v[vOffset] = -v[vOffset]; } } ////////////////////////////////////////////////////////////////////////// template static void inverseColumnSignCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, void* vu, const Nd4jLong* uShapeInfo, void* vv, const Nd4jLong* vShapeInfo) { inverseColumnSignCuda<<>>(vu, uShapeInfo, vv, vShapeInfo); } BUILD_SINGLE_TEMPLATE(template void inverseColumnSignCudaLauncher, (const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t* stream, void* vu, const Nd4jLong* uShapeInfo, void* vv, const Nd4jLong* vShapeInfo), FLOAT_TYPES); ////////////////////////////////////////////////////////////////////////// static void svdQR(sd::LaunchContext* context, const NDArray* A, NDArray* S, NDArray* U, NDArray* VT, const bool fullUV, const bool calcUV) { // since cusa api cusolverDnDgesvd/cusolverDnSgesvd have following constrain on input matrix A: A_rows >= A_columns && A_order = 'f' // we make this function to have deal with 2 valid cases only: // 1) A_rows >= A_columns and A_corder = 'f' // 2) A_rows <= A_columns and A_corder = 'c' - int this case perform transposition to get f order // if 1) or 2) are not met then throw exception // A [m, n] // S [n] // U [m, m] or [m, n] if fullUV = false and m > n // VT [n, n] or [m, n] if fullUV = false and m < n if(A->rankOf() != 2) throw std::runtime_error("svdQR: rank of A array is not equal 2 !"); auto m = A->sizeAt(0); auto n = A->sizeAt(1); const int minDim = m < n ? m : n; const char orderA = A->ordering(); if(m < n) throw std::runtime_error("svdQR: due to cuda api input constrains given shape of A array are not valid !"); if(std::vector({minDim}) != S->getShapeAsVector()) throw std::runtime_error("svdQR: wrong shape of S array !"); if(calcUV) { if(fullUV && std::vector({m,m}) != U->getShapeAsVector()) throw std::runtime_error("svdQR: wrong shape of U array !"); else if(!fullUV && std::vector({m,minDim}) != U->getShapeAsVector()) throw std::runtime_error("svdQR: wrong shape of U array !"); if(fullUV && std::vector({n,n}) != VT->getShapeAsVector()) throw std::runtime_error("svdQR: wrong shape of VT array !"); else if(!fullUV && std::vector({minDim,n}) != VT->getShapeAsVector()) throw std::runtime_error("svdQR: wrong shape of VT array !"); } NDArray* pA = const_cast(A); NDArray* pS = S; NDArray* pU = U; NDArray* pVT = VT; std::vector toDelete; if(pA->ews() != 1 || pA->ordering() == 'c') { pA = new NDArray(A->dup('f')); toDelete.push_back(pA); } if(S->ews() != 1) { pS = new NDArray(S->dup('f')); toDelete.push_back(pS); } if(calcUV) { if(pU->ews() != 1 || pU->ordering() == 'c') { pU = new NDArray(U->dup('f')); toDelete.push_back(pU); } if(pVT->ews() != 1 || pVT->ordering() == 'c') { pVT = new NDArray(VT->dup('f')); toDelete.push_back(pVT); } } std::lock_guard lock(*LaunchContext::deviceMutex()); // create cusolverDn handle cusolverDnHandle_t* handle = (cusolverDnHandle_t*)context->getCusolverHandle(); //nullptr; //cusolverStatus_t status = cusolverDnCreate(&handle); if(handle == nullptr) throw cuda_exception::build("svdQR: cuda failed !", -1); // stream auto status = cusolverDnSetStream(*handle, *context->getCudaStream()); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdQR: cuda failed !", status); // query working space of SVD int lwork = 0; if(A->dataType() == DataType::DOUBLE) status = cusolverDnDgesvd_bufferSize(*handle, m, n, &lwork); else if(A->dataType() == DataType::FLOAT32) status = cusolverDnSgesvd_bufferSize(*handle, m, n, &lwork); else throw std::invalid_argument("svdQR: given data type is unsupported !"); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdQR: cuda failed !", status); // allocate memory for dWork void* dWork = nullptr; cudaError_t status2 = cudaMalloc((void**)&dWork , A->sizeOfT() * lwork); if(status2 != cudaSuccess) throw cuda_exception::build("svdQR: cuda failed !", status2); signed char jobu, jobvt; if(calcUV) { if(fullUV) jobu = jobvt = 'A'; else jobu = jobvt = 'S'; } else { jobu = jobvt = 'N'; } int *devInfo = nullptr; void* rWork = nullptr; int lda(m), ldu, ldvt; if(calcUV) { ldu = pU->sizeAt(0); ldvt = pVT->sizeAt(0); } PointersManager manager(context, "svdQR"); NDArray::prepareSpecialUse({pS, pU, pVT}, {pA}); // choose appropriate cuda gemm api depending on data types if(A->dataType() == DataType::DOUBLE) { status = cusolverDnDgesvd(*handle, jobu, jobvt, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : nullptr, ldu, calcUV ? reinterpret_cast(pVT->specialBuffer()) : nullptr, ldvt, reinterpret_cast(dWork), lwork, reinterpret_cast(rWork), devInfo); } else if(A->dataType() == DataType::FLOAT32) { status = cusolverDnSgesvd(*handle, jobu, jobvt, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : nullptr, ldu, calcUV ? reinterpret_cast(pVT->specialBuffer()) : nullptr, ldvt, reinterpret_cast(dWork), lwork, reinterpret_cast(rWork), devInfo); } else throw std::invalid_argument("svdQR: given data type is unsupported !"); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdQR: cuda failed !", status); manager.synchronize(); NDArray::registerSpecialUse({pS, pU, pVT}, {pA}); S->assign(pS); if(calcUV) { U->assign(pU); VT->assign(pVT); } for (int i = toDelete.size() - 1; i >= 0; --i) delete toDelete[i]; if (devInfo) cudaFree(devInfo); if (dWork ) cudaFree(dWork); if (rWork) cudaFree(rWork); // if(handle) // cusolverDnDestroy(handle); // cudaDeviceReset(); } ////////////////////////////////////////////////////////////////////////// static void svdJcb(sd::LaunchContext* context, const NDArray* A, NDArray* S, NDArray* U, NDArray* V, const bool fullUV, const bool calcUV) { // A [m, n] // S [n] // U [m, m] or [m, n] if fullUV = false and m > n // V [n, n] or [n, m] if fullUV = false and m < n if(A->rankOf() != 2) throw std::runtime_error("svdJcb: rank of A array is not equal 2 !"); int m = A->sizeAt(0); int n = A->sizeAt(1); const int minDim = m < n ? m : n; if(std::vector({minDim}) != S->getShapeAsVector()) throw std::runtime_error("svdJcb: wrong shape of S array !"); if(calcUV) { if(fullUV && std::vector({m,m}) != U->getShapeAsVector()) throw std::runtime_error("svdJcb: wrong shape of U array !"); else if(!fullUV && std::vector({m,minDim}) != U->getShapeAsVector()) throw std::runtime_error("svdJcb: wrong shape of U array !"); if(fullUV && std::vector({n,n}) != V->getShapeAsVector()) throw std::runtime_error("svdJcb: wrong shape of V array !"); else if(!fullUV && std::vector({n,minDim}) != V->getShapeAsVector()) throw std::runtime_error("svdJcb: wrong shape of V array !"); } NDArray* pA = const_cast(A); const bool aForder = m == 1 || A->strideAt(0) == 1; const bool aCorder = n == 1 || A->strideAt(1) == 1; const bool transA = !aForder && aCorder; const bool dupA = !aForder && !aCorder; std::vector toDelete; if(dupA) { pA = new NDArray(A->dup('f')); toDelete.push_back(pA); } NDArray* pS = S; if(S->ews() != 1) { pS = new NDArray(S->dup('f')); toDelete.push_back(pS); } NDArray *pU(nullptr), *pV(nullptr); int lda = transA ? pA->strideAt(0) : pA->strideAt(1); int ldu(transA ? n : m), ldv(transA ? m : n); bool uForder(true), vForder(true); if(calcUV) { pU = transA ? V : U; pV = transA ? U : V; uForder = pU->sizeAt(0) == 1 || pU->strideAt(0) == 1; vForder = pV->sizeAt(0) == 1 || pV->strideAt(0) == 1; if(!uForder) { pU = new NDArray(pU->dup('f')); toDelete.push_back(pU); } if(!vForder) { pV = new NDArray(pV->dup('f')); toDelete.push_back(pV); } ldu = pU->strideAt(1); ldv = pV->strideAt(1); } std::lock_guard lock(*LaunchContext::deviceMutex()); // create cusolverDn handle cusolverDnHandle_t* handle = (cusolverDnHandle_t*)context->getCusolverHandle(); //cusolverStatus_t status = cusolverDnCreate(&handle); if(handle == nullptr) throw cuda_exception::build("svdJcb: cuda failed !", -1); // stream auto status = cusolverDnSetStream(*handle, *context->getCudaStream()); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdJcb: cuda failed !", status); // set parameters gesvdjInfo_t gesvdjParams = nullptr; status = cusolverDnCreateGesvdjInfo(&gesvdjParams); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdJcb: cuda failed !", status); status = cusolverDnXgesvdjSetTolerance(gesvdjParams, 1.e-7); // tolerance if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdJcb: cuda failed !", status); status = cusolverDnXgesvdjSetMaxSweeps(gesvdjParams, 15); // max_sweeps if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdJcb: cuda failed !", status); int *devInfo = nullptr; const cusolverEigMode_t jobz = calcUV ? CUSOLVER_EIG_MODE_VECTOR : CUSOLVER_EIG_MODE_NOVECTOR; const int econ = !fullUV; if(transA) math::nd4j_swap(m, n); // *** avoid bug in cuda API *** void* nullPtr = nullptr; NDArray* arrToAvoidBugInAPI = nullptr; if(!calcUV && m != n) { int maxDim = m > n ? m : n; arrToAvoidBugInAPI = new NDArray('c', {maxDim, maxDim}, pA->dataType(), context); nullPtr = arrToAvoidBugInAPI->specialBuffer(); } // ****************** NDArray::prepareSpecialUse({pS, pU, pV}, {pA}); // query working space of SVD int lwork = 0; if(A->dataType() == DataType::DOUBLE) status = cusolverDnDgesvdj_bufferSize(*handle, jobz, econ, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : reinterpret_cast(nullPtr), ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : reinterpret_cast(nullPtr), ldv, &lwork, gesvdjParams); else if(A->dataType() == DataType::FLOAT32) status = cusolverDnSgesvdj_bufferSize(*handle, jobz, econ, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : reinterpret_cast(nullPtr), ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : reinterpret_cast(nullPtr), ldv, &lwork, gesvdjParams); else throw std::invalid_argument("svdJcb: given data type is unsupported !"); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdJcb: cuda failed !", status); // allocate memory dWork void* dWork = nullptr; auto status2 = cudaMalloc((void**)&dWork , A->sizeOfT() * lwork); if(status2 != cudaSuccess) throw cuda_exception::build("svdJcb: cuda failed !", status2); PointersManager manager(context, "svdJcb"); // choose appropriate cuda gemm api depending on data types if(A->dataType() == DataType::DOUBLE) { status = cusolverDnDgesvdj(*handle, jobz, econ, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : reinterpret_cast(nullPtr), ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : reinterpret_cast(nullPtr), ldv, reinterpret_cast(dWork), lwork, devInfo, gesvdjParams); } else if(A->dataType() == DataType::FLOAT32) { status = cusolverDnSgesvdj(*handle, jobz, econ, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : reinterpret_cast(nullPtr), ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : reinterpret_cast(nullPtr), ldv, reinterpret_cast(dWork), lwork, devInfo, gesvdjParams); } else throw std::invalid_argument("svdJcb: given data type is unsupported !"); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdJcb: cuda failed !", status); manager.synchronize(); NDArray::registerSpecialUse({pS, pU, pV}, {pA}); if(S->ews() != 1) S->assign(pS); if(calcUV) { if(!uForder) U->assign(transA ? pV : pU); if(!vForder) V->assign(transA ? pU : pV); } if(!calcUV && m != n) delete arrToAvoidBugInAPI; for (int i = toDelete.size() - 1; i >= 0; --i) delete toDelete[i]; if (devInfo) cudaFree(devInfo); if (dWork ) cudaFree(dWork); // if(handle) // cusolverDnDestroy(handle); if(gesvdjParams) cusolverDnDestroyGesvdjInfo(gesvdjParams); // cudaDeviceReset(); } ////////////////////////////////////////////////////////////////////////// static void svdBatched(sd::LaunchContext* context, const NDArray* A, NDArray* S, NDArray* U, NDArray* V, const bool fullUV, const bool calcUV) { // A [..., m, n] // S [..., n] // U [..., m, m] or [..., m, n] if fullUV = false and m > n // V [..., n, n] or [..., n, m] if fullUV = false and m < n auto m = A->sizeAt(-2); auto n = A->sizeAt(-1); const int minDim = m < n ? m : n; const Nd4jLong bS = A->lengthOf() / (m * n); if(m > 32 || n > 32) throw std::runtime_error("svdBatched: numbers of rows and columns should be <= 32 !"); if(minDim != S->sizeAt(-1)) throw std::runtime_error("svdBatched: wrong shape of S array !"); if(calcUV) { if(U->sizeAt(-2) != m) throw std::runtime_error("svdBatched: wrong shape of U array !"); if(U->sizeAt(-1) != (fullUV ? m : minDim)) throw std::runtime_error("svdBatched: wrong shape of U array !"); if(U->lengthOf() / (U->sizeAt(-2) * U->sizeAt(-1)) != bS) throw std::runtime_error("svdBatched: wrong shape of U array !"); if(V->sizeAt(-2) != n) throw std::runtime_error("svdBatched: wrong shape of V array !"); if(V->sizeAt(-1) != (fullUV ? n : minDim)) throw std::runtime_error("svdBatched: wrong shape of V array !"); if(V->lengthOf() / (V->sizeAt(-2) * V->sizeAt(-1)) != bS) throw std::runtime_error("svdBatched: wrong shape of V array !"); } NDArray* pA = const_cast(A); NDArray* pS = S; NDArray* pU = U; NDArray* pV = V; std::vector toDelete; if(pA->ews() != 1 || pA->ordering() == 'c') { pA = new NDArray(A->dup('f')); toDelete.push_back(pA); } if(S->ews() != 1) { pS = new NDArray(S->dup('f')); toDelete.push_back(pS); } if(calcUV) { if(pU->ews() != 1 || pU->ordering() == 'c') { pU = new NDArray(U->dup('f')); toDelete.push_back(pU); } if(pV->ews() != 1 || pV->ordering() == 'c') { pV = new NDArray(V->dup('f')); toDelete.push_back(pV); } } // create cusolverDn handle cusolverDnHandle_t handle = nullptr; cusolverStatus_t status = cusolverDnCreate(&handle); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdBatched: cuda failed !", status); // stream status = cusolverDnSetStream(handle, *context->getCudaStream()); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdBatched: cuda failed !", status); // set parameters gesvdjInfo_t gesvdjParams = nullptr; status = cusolverDnCreateGesvdjInfo(&gesvdjParams); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdBatched: cuda failed !", status); status = cusolverDnXgesvdjSetTolerance(gesvdjParams, 1.e-7); // tolerance if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdBatched: cuda failed !", status); status = cusolverDnXgesvdjSetMaxSweeps(gesvdjParams, 15); // max_sweeps if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdBatched: cuda failed !", status); // devInfo int *devInfo = nullptr; auto status2 = cudaMalloc((void**)&devInfo, sizeof(int) * bS); if(status2 != cudaSuccess) throw cuda_exception::build("svdBatched: cuda failed !", status2); status2 = cudaDeviceSynchronize(); if(status2 != cudaSuccess) throw cuda_exception::build("svdJcb: cuda failed !", status2); const cusolverEigMode_t jobz = calcUV ? CUSOLVER_EIG_MODE_VECTOR : CUSOLVER_EIG_MODE_NOVECTOR; int lda(m), ldu, ldv; if(calcUV) { ldu = pU->sizeAt(-2); ldv = pV->sizeAt(-2); } // Ak (i,j) = A[i + 5*j + 25*k] // query working space of SVD int lwork = 0; if(A->dataType() == DataType::DOUBLE) status = cusolverDnDgesvdjBatched_bufferSize(handle, jobz, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : nullptr, ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : nullptr, ldv, &lwork, gesvdjParams, bS); else if(A->dataType() == DataType::FLOAT32) status = cusolverDnSgesvdjBatched_bufferSize(handle, jobz, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : nullptr, ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : nullptr, ldv, &lwork, gesvdjParams, bS); else throw std::invalid_argument("svdBatched: given data type is unsupported !"); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdBatched: cuda failed !", status); // allocate memory dWork void* dWork = nullptr; status2 = cudaMalloc((void**)&dWork , A->sizeOfT() * lwork); if(status2 != cudaSuccess) throw cuda_exception::build("svdBatched: cuda failed !", status2); status2 = cudaDeviceSynchronize(); if(status2 != cudaSuccess) throw cuda_exception::build("svdBatched: cuda failed !", status2); PointersManager manager(context, "svdBatched"); NDArray::prepareSpecialUse({pS, pU, pV}, {pA}); // choose appropriate cuda gemm api depending on data types if(A->dataType() == DataType::DOUBLE) { status = cusolverDnDgesvdjBatched(handle, jobz, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : nullptr, ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : nullptr, ldv, reinterpret_cast(dWork), lwork, devInfo, gesvdjParams, bS); } else if(A->dataType() == DataType::FLOAT32) { status = cusolverDnSgesvdjBatched(handle, jobz, m, n, reinterpret_cast(pA->specialBuffer()), lda, reinterpret_cast(pS->specialBuffer()), calcUV ? reinterpret_cast(pU->specialBuffer()) : nullptr, ldu, calcUV ? reinterpret_cast(pV->specialBuffer()) : nullptr, ldv, reinterpret_cast(dWork), lwork, devInfo, gesvdjParams, bS); } else throw std::invalid_argument("svdBatched: given data type is unsupported !"); if(status != CUSOLVER_STATUS_SUCCESS) throw cuda_exception::build("svdBatched: cuda failed !", status); manager.synchronize(); NDArray::registerSpecialUse({pS, pU, pV}, {pA}); S->assign(pS); if(calcUV) { U->assign(pU); V->assign(pV); } for (int i = toDelete.size() - 1; i >= 0; --i) delete toDelete[i]; if (devInfo) cudaFree(devInfo); if (dWork ) cudaFree(dWork); if(handle) cusolverDnDestroy(handle); if(gesvdjParams) cusolverDnDestroyGesvdjInfo(gesvdjParams); // cudaDeviceReset(); } //////////////////////////////////////////////////////////////////// void svd(sd::LaunchContext* context, const NDArray* x, const std::vector& outArrs, const bool fullUV, const bool calcUV, const int switchNum) { NDArray* S = outArrs[0]; NDArray* U = outArrs[1]; // NDArray VT = outArrs[2]->transpose(); NDArray* V = outArrs[2]; NDArray::prepareSpecialUse({S, U, V}, {x}); if(x->rankOf() == 2) { // svdQR(context, x, S, U, VT, fullUV, calcUV); svdJcb(context, x, S, U, V, fullUV, calcUV); } else { // svdBatched(context, *x, *S, *U, *V, fullUV, calcUV); ResultSet *tadsU(nullptr), *tadsV(nullptr); auto tadsX = x->allTensorsAlongDimension({x->rankOf() - 2, x->rankOf() - 1}); auto tadsS = S->allTensorsAlongDimension({S->rankOf() - 1}); if(calcUV) { tadsU = new ResultSet(U->allTensorsAlongDimension({U->rankOf() - 2, U->rankOf() - 1})); tadsV = new ResultSet(V->allTensorsAlongDimension({V->rankOf() - 2, V->rankOf() - 1})); } for (int i = 0; i < tadsX.size(); ++i) svdJcb(context, tadsX.at(i), tadsS.at(i), calcUV ? tadsU->at(i) : nullptr, calcUV ? tadsV->at(i) : nullptr, fullUV, calcUV); if(calcUV) { delete tadsU; delete tadsV; } } NDArray::registerSpecialUse({S, U, V}, {x}); } } } }