/******************************************************************************* * Copyright (c) 2015-2018 Skymind, Inc. * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author Yurii Shyrma, created on 26.02.2018 // #include #include namespace nd4j { namespace ops { namespace helpers { ////////////////////////////////////////////////////////////////////////// template static void addBias_(const NDArray& input, const NDArray& bias, NDArray &output, const bool isNCHW) { // bias [oC] // if(input_rank == 4) // input and output have same shapes: [bS, oH, oW, oC] (NHWC) or [bS, oC, oH, oW] (NCHW) // if(input_rank == 5) // input and output have same shapes: [bS, oD, oH, oW, oC] (NHWC) or [bS, oD, oC, oH, oW] (NCHW) // else // apply applyBroadCast const X* x = input.bufferAsT(); const Y* y = bias.bufferAsT(); X* z = output.bufferAsT(); const bool inOutAreSame = x == z; const uint bS = output.sizeAt(0); // batch size const Nd4jLong yStrideC = bias.stridesOf()[0]; const Nd4jLong zStrideB = output.stridesOf()[0]; if(output.rankOf() == 4) { const uint C = isNCHW ? output.sizeAt(1) : output.sizeAt(3); // channels const uint oH = isNCHW ? output.sizeAt(2) : output.sizeAt(1); // height const uint oW = isNCHW ? output.sizeAt(3) : output.sizeAt(2); // width const Nd4jLong zStrideC = isNCHW ? output.stridesOf()[1] : output.stridesOf()[3]; const Nd4jLong zStrideH = isNCHW ? output.stridesOf()[2] : output.stridesOf()[1]; const Nd4jLong zStrideW = isNCHW ? output.stridesOf()[3] : output.stridesOf()[2]; if(inOutAreSame) { auto func = PRAGMA_THREADS_FOR_3D { for (uint b = start_x; b < stop_x; b += inc_x) for (uint c = start_y; c < stop_y; c += inc_y) for (uint h = start_z; h < stop_z; h += inc_z) for (uint w = 0; w < oW; ++w) z[b * zStrideB + c * zStrideC + h * zStrideH + w * zStrideW] += static_cast(y[c * yStrideC]); }; samediff::Threads::parallel_for(func, 0, bS, 1, 0, C, 1, 0, oH, 1); } else { const Nd4jLong xStrideB = input.stridesOf()[0]; const Nd4jLong xStrideC = isNCHW ? input.stridesOf()[1] : input.stridesOf()[3]; const Nd4jLong xStrideH = isNCHW ? input.stridesOf()[2] : input.stridesOf()[1]; const Nd4jLong xStrideW = isNCHW ? input.stridesOf()[3] : input.stridesOf()[2]; auto func = PRAGMA_THREADS_FOR_3D { for (uint b = start_x; b < stop_x; b += inc_x) for (uint c = start_y; c < stop_y; c += inc_y) for (uint h = start_z; h < stop_z; h += inc_z) for (uint w = 0; w < oW; ++w) z[b * zStrideB + c * zStrideC + h * zStrideH + w * zStrideW] = x[b * xStrideB + c * xStrideC + h * xStrideH + w * xStrideW] + static_cast(y[c * yStrideC]); }; samediff::Threads::parallel_for(func, 0, bS, 1, 0, C, 1, 0, oH, 1); } } else if(output.rankOf() == 5) { const uint C = isNCHW ? output.sizeAt(1) : output.sizeAt(4); // channels const uint oD = isNCHW ? output.sizeAt(2) : output.sizeAt(1); // depth const uint oH = isNCHW ? output.sizeAt(3) : output.sizeAt(2); // height const uint oW = isNCHW ? output.sizeAt(4) : output.sizeAt(3); // width const Nd4jLong zStrideC = isNCHW ? output.stridesOf()[1] : output.stridesOf()[4]; const Nd4jLong zStrideD = isNCHW ? output.stridesOf()[2] : output.stridesOf()[1]; const Nd4jLong zStrideH = isNCHW ? output.stridesOf()[3] : output.stridesOf()[2]; const Nd4jLong zStrideW = isNCHW ? output.stridesOf()[4] : output.stridesOf()[3]; if(inOutAreSame) { auto func = PRAGMA_THREADS_FOR_3D { for (uint b = start_x; b < stop_x; b += inc_x) for (uint c = start_y; c < stop_y; c += inc_y) for (uint d = start_z; d < stop_z; d += inc_z) for (uint h = 0; h < oH; ++h) for (uint w = 0; w < oW; ++w) z[b * zStrideB + c * zStrideC + d * zStrideD + h * zStrideH + w * zStrideW] += static_cast(y[c * yStrideC]); }; samediff::Threads::parallel_for(func, 0, bS, 1, 0, C, 1, 0, oD, 1); } else { const Nd4jLong xStrideB = input.stridesOf()[0]; const Nd4jLong xStrideC = isNCHW ? input.stridesOf()[1] : input.stridesOf()[4]; const Nd4jLong xStrideD = isNCHW ? input.stridesOf()[2] : input.stridesOf()[1]; const Nd4jLong xStrideH = isNCHW ? input.stridesOf()[3] : input.stridesOf()[2]; const Nd4jLong xStrideW = isNCHW ? input.stridesOf()[4] : input.stridesOf()[3]; auto func = PRAGMA_THREADS_FOR_3D { for (uint b = start_x; b < stop_x; b += inc_x) for (uint c = start_y; c < stop_y; c += inc_y) for (uint d = start_z; d < stop_z; d += inc_z) for (uint h = 0; h < oH; ++h) for (uint w = 0; w < oW; ++w) z[b * zStrideB + c * zStrideC + d * zStrideD + h * zStrideH + w * zStrideW] = x[b * xStrideB + c * xStrideC + d * xStrideD + h * xStrideH + w * xStrideW] + static_cast(y[c * yStrideC]); }; samediff::Threads::parallel_for(func, 0, bS, 1, 0, C, 1, 0, oD, 1); } } else { const int channelDim = isNCHW ? 1 : input.rankOf() - 1; // second or last const_cast(input).applyBroadcast(nd4j::broadcast::Add, {channelDim}, &bias, &output); } } ////////////////////////////////////////////////////////////////////////// void addBias(nd4j::graph::Context& block, const NDArray& input, const NDArray& bias, NDArray& output, const bool isNCHW) { // bias.rankOf() == 1 ? bias : bias.reshape(bias.ordering(), {bias.lengthOf()}) BUILD_DOUBLE_SELECTOR(input.dataType(), bias.dataType(), addBias_, (input, bias, output, isNCHW), FLOAT_TYPES, FLOAT_TYPES); } BUILD_DOUBLE_TEMPLATE(template void addBias_, (const NDArray& input, const NDArray& bias, NDArray& output, const bool isNCHW), FLOAT_TYPES, FLOAT_TYPES); } } }