/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // Created by Yurii Shyrma on 12.12.2017. // #ifndef LIBND4J_ZETA_H #define LIBND4J_ZETA_H #include #include "array/NDArray.h" namespace sd { namespace ops { namespace helpers { // calculate the Hurwitz zeta function for arrays void zeta(sd::LaunchContext * context, const NDArray& x, const NDArray& q, NDArray& output); // calculate the Hurwitz zeta function for scalars // fast implementation, it is based on Euler-Maclaurin summation formula template _CUDA_HD T zetaScalar(const T x, const T q) { const T machep = 1.11022302462515654042e-16; // FIXME: @raver119 // expansion coeffZetaicients for Euler-Maclaurin summation formula (2k)! / B2k, where B2k are Bernoulli numbers const T coeffZeta[] = { 12.0,-720.0,30240.0,-1209600.0,47900160.0,-1.8924375803183791606e9,7.47242496e10,-2.950130727918164224e12, 1.1646782814350067249e14, -4.5979787224074726105e15, 1.8152105401943546773e17, -7.1661652561756670113e18}; // if (x <= (T)1.) // throw("zeta function: x must be > 1 !"); // if (q <= (T)0.) // throw("zeta function: q must be > 0 !"); T a, b(0.), k, s, t, w; s = math::nd4j_pow(q, -x); a = q; int i = 0; while(i < 9 || a <= (T)9.) { i += 1; a += (T)1.0; b = math::nd4j_pow(a, -x); s += b; if(math::nd4j_abs(b / s) < (T)machep) return s; } w = a; s += b * (w / (x - (T)1.) - (T)0.5); a = (T)1.; k = (T)0.; for(i = 0; i < 12; ++i) { a *= x + k; b /= w; t = a * b / coeffZeta[i]; s += t; t = math::nd4j_abs(t / s); if(t < (T)machep) return s; k += (T)1.f; a *= x + k; b /= w; k += (T)1.f; } return s; } } } } #endif //LIBND4J_ZETA_H