/* ****************************************************************************** * * * This program and the accompanying materials are made available under the * terms of the Apache License, Version 2.0 which is available at * https://www.apache.org/licenses/LICENSE-2.0. * * See the NOTICE file distributed with this work for additional * information regarding copyright ownership. * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations * under the License. * * SPDX-License-Identifier: Apache-2.0 ******************************************************************************/ // // @author GS // #include #include #include #include namespace sd { namespace ops { namespace helpers { //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template linkage void cubeDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ return y * (3 * x * x); }; input->applyPairwiseLambda(*epsilon, functor, *output); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void cubeDerivative(sd::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), cubeDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //return (x >= X(0.f) ? y: -y); template linkage void reduceNorm1_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ return x > T(0.f)? y : -y; }; input->applyPairwiseLambda(*epsilon, functor, *output); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void reduceNorm1(sd::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), reduceNorm1_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// template linkage void sigmCrossEntropy_(NDArray* logits, NDArray* labels, NDArray* output) { auto functor = LAMBDA_TT(x, y){ return sd::math::nd4j_max(x, (T)0.f) - x * y + sd::math::nd4j_log((T)1.f + sd::math::nd4j_exp(-sd::math::nd4j_abs(x))); }; logits->applyPairwiseLambda(*labels, functor, *output); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void sigmCrossEntropy(sd::LaunchContext * context, NDArray* logits, NDArray* labels, NDArray* output) { BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropy_, (logits, labels, output), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////// template linkage void sigmCrossEntropyGrad_(NDArray* logits, NDArray* labels, NDArray* output) { // 1 - labels - 1 / (1 + exp(logits)) auto functor = LAMBDA_TT(x, y) { if(x <= 0) return static_cast(1.) - y - static_cast(1.) / (static_cast(1.) + sd::math::nd4j_exp(x)); auto e = sd::math::nd4j_exp(-x); return static_cast(1.) - y - e / (static_cast(1.) + e); }; logits->applyPairwiseLambda(*labels, functor, *output); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void sigmCrossEntropyGrad(sd::LaunchContext * context, NDArray* logits, NDArray* labels, NDArray* output) { BUILD_SINGLE_SELECTOR(logits->dataType(), sigmCrossEntropyGrad_, (logits, labels, output), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// // X f = (X) 1.0f + sd::math::nd4j_abs(d1); // return (X) d2 * ((X) 1.0f / (f * f)); // template linkage void softSignDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ T ss = (T)1.f + sd::math::nd4j_abs(x); return y * ((T) 1.0f / (ss * ss)); }; input->applyPairwiseLambda(*epsilon, functor, *output); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void softSignDerivative(sd::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), softSignDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template linkage void softPlusDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ T p = sd::math::nd4j_pow(static_cast(M_E), x); return y * (p / (p + 1.)); }; input->applyPairwiseLambda(*epsilon, functor, *output); } void softPlusDerivative(sd::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), softPlusDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// /// /// \param input /// \param epsilon /// \param output template linkage void sigmoidDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ T s = sd::math::nd4j_sigmoid(x); return y * (s * ((T) 1.0f - s)); }; input->applyPairwiseLambda(*epsilon, functor, *output); } void sigmoidDerivative(sd::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), sigmoidDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } template linkage void hardSigmoidDerivative_(NDArray* input, NDArray* epsilon, NDArray* output) { auto functor = LAMBDA_TT(x, y){ return y * simdOps::HardSigmoidDerivative::op(x, nullptr); }; input->applyPairwiseLambda(*epsilon, functor, *output); } void hardSigmoidDerivative(sd::LaunchContext * context, NDArray* theFirst, NDArray* theSecond, NDArray* theOutput) { BUILD_SINGLE_SELECTOR(theFirst->dataType(), hardSigmoidDerivative_, (theFirst, theSecond, theOutput), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template linkage void logSumExp_(NDArray* input, NDArray* axis, NDArray* output) { // reduce along axis with NDArray tempInput = input->dup(); input->applyTransform(transform::Exp, tempInput); std::vector axisVector; if (axis != nullptr) { axisVector.resize(axis->lengthOf()); for (size_t i = 0; i < axisVector.size(); ++i) axisVector[i] = axis->e(i); } tempInput.reduceAlongDimension(reduce::Sum, *output, axisVector); output->applyTransform(transform::Log, *output); } template linkage void logSumExp_(NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output) { // reduce along axis with NDArray tempInput = input->dup(); input->applyPairwiseTransform(pairwise::Subtract, *subtrah, tempInput); tempInput.applyTransform(transform::Exp, tempInput); std::vector axisVector; if (axis != nullptr) { axisVector.resize(axis->lengthOf()); for (size_t i = 0; i < axisVector.size(); ++i) axisVector[i] = axis->e(i); } tempInput.reduceAlongDimension(reduce::Sum, *output, axisVector); output->applyTransform(transform::Log, *output); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void logSumExp(sd::LaunchContext * context, NDArray* input, NDArray* axis, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), logSumExp_, (input, axis, output), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void logSumExp(sd::LaunchContext * context, NDArray* input, NDArray* subtrah, NDArray* axis, NDArray* output) { BUILD_SINGLE_SELECTOR(input->dataType(), logSumExp_, (input, subtrah, axis, output), FLOAT_TYPES); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// template void weightedCrossEntropyWithLogitsFunctor_(NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) { T posWeight = weights->e(0); auto mainRoutineT1 = LAMBDA_TT(_x, _z, posWeight) { T targetWeight = (1. + (posWeight - (T)1.f) * _z); return (1. - _z) * _x + targetWeight * (sd::math::nd4j_log((T)1.f + sd::math::nd4j_exp(-sd::math::nd4j_abs(_x))) + sd::math::nd4j_max(-_x, T(0.f)) ); }; auto mainRoutineT2 = LAMBDA_TTT(_x, _z, _w) { return (((T)1.0 - _z) * _x) + _w * (sd::math::nd4j_log(T(1.) + sd::math::nd4j_exp(-sd::math::nd4j_abs(_x))) + sd::math::nd4j_max(-_x, T(0.f))); }; if (weights->isScalar()) { const_cast(input)->applyPairwiseLambda(const_cast(*targets), mainRoutineT1, *output); } else { std::unique_ptr targetVector(new NDArray(*weights)); targetVector->applyScalar(scalar::Add, -1.f, *targetVector); std::unique_ptr targetTensor(new NDArray(*targets)); *targetTensor = (*targetVector * *targetTensor) + T(1.f); const_cast(input)->applyTriplewiseLambda(const_cast(*targets), *targetTensor.get(), mainRoutineT2, *output); } } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// void weightedCrossEntropyWithLogitsFunctor(sd::LaunchContext * context, NDArray const* targets, NDArray const* input, NDArray const* weights, NDArray* output) { NDArray::prepareSpecialUse({output}, {targets, input, weights}); BUILD_SINGLE_SELECTOR(targets->dataType(), weightedCrossEntropyWithLogitsFunctor_, (targets, input, weights, output), FLOAT_TYPES); NDArray::registerSpecialUse({output}, {targets, input, weights}); } } } }