/* * ****************************************************************************** * * * * * * This program and the accompanying materials are made available under the * * terms of the Apache License, Version 2.0 which is available at * * https://www.apache.org/licenses/LICENSE-2.0. * * * * See the NOTICE file distributed with this work for additional * * information regarding copyright ownership. * * Unless required by applicable law or agreed to in writing, software * * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * * License for the specific language governing permissions and limitations * * under the License. * * * * SPDX-License-Identifier: Apache-2.0 * ***************************************************************************** */ // // @author Yurii Shyrma (iuriish@yahoo.com) // #include #include namespace sd { namespace ops { ////////////////////////////////////////////////////////////////////////// template __global__ static void upsampling2dCuda(const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int factorH, const int factorW, const bool isNCHW) { // x has shape [bS, iC, iH, iW] (NCHW) or [bS, iH, iW, iC] (NHWC) // z has shape [bS, iC, factorH*iH, factorW*iW ] (NCHW) or [bS, factorH*iH, factorW*iW, iC] (NHWC) const T* x = reinterpret_cast(vx); T* z = reinterpret_cast(vz); __shared__ int rank, dimIH; __shared__ Nd4jLong zLen, *sharedMem; if (threadIdx.x == 0) { extern __shared__ unsigned char shmem[]; sharedMem = reinterpret_cast(shmem); dimIH = isNCHW ? 2 : 1; zLen = shape::length(zShapeInfo); rank = 4; } __syncthreads(); const auto zInd = threadIdx.x + blockIdx.x * blockDim.x; if(zInd >= zLen) return; auto coords = sharedMem + threadIdx.x * rank; shape::index2coords(zInd, zShapeInfo, coords); const auto zOffset = shape::getOffset(zShapeInfo, coords); coords[dimIH] /= factorH; coords[dimIH + 1] /= factorW; const auto xOffset = shape::getOffset(xShapeInfo, coords); z[zOffset] = x[xOffset]; } ////////////////////////////////////////////////////////////////////////// template static void upsampling2dCudaLauncher(const int blocksPerGrid, const int threadsPerBlock, const int sharedMem, const cudaStream_t *stream, const void* vx, const Nd4jLong* xShapeInfo, void* vz, const Nd4jLong* zShapeInfo, const int factorH, const int factorW, const bool isNCHW) { upsampling2dCuda<<>>(vx, xShapeInfo, vz, zShapeInfo, factorH, factorW, isNCHW); } ////////////////////////////////////////////////////////////////////////// void ConvolutionUtils::upsampling2d(sd::graph::Context& block, const NDArray& input, NDArray& output, const int factorH, const int factorW, const bool isNCHW) { PointersManager manager(block.launchContext(), "upsampling2d"); const int threadsPerBlock = MAX_NUM_THREADS / 2; const int blocksPerGrid = (output.lengthOf() + threadsPerBlock - 1) / threadsPerBlock; const int sharedMem = output.rankOf() * sizeof(Nd4jLong) * threadsPerBlock + 128; NDArray::prepareSpecialUse({&output}, {&input}); BUILD_SINGLE_SELECTOR(input.dataType(), upsampling2dCudaLauncher, (blocksPerGrid, threadsPerBlock, sharedMem, block.launchContext()->getCudaStream(), input.specialBuffer(), input.specialShapeInfo(), output.specialBuffer(), output.specialShapeInfo(), factorH, factorW, isNCHW), FLOAT_TYPES); NDArray::registerSpecialUse({&output}, {&input}); manager.synchronize(); } } }